Changlin Yang, Vrunda Trivedi, Kyle Dyson, Tongjun Gu, Kate M Candelario, Oleg Yegorov, Duane A Mitchell
{"title":"识别肿瘤排斥抗原和髓母细胞瘤的免疫学特征。","authors":"Changlin Yang, Vrunda Trivedi, Kyle Dyson, Tongjun Gu, Kate M Candelario, Oleg Yegorov, Duane A Mitchell","doi":"10.1186/s13073-024-01363-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma.</p><p><strong>Methods: </strong>We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods.</p><p><strong>Results: </strong>Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures.</p><p><strong>Conclusions: </strong>Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"102"},"PeriodicalIF":10.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma.\",\"authors\":\"Changlin Yang, Vrunda Trivedi, Kyle Dyson, Tongjun Gu, Kate M Candelario, Oleg Yegorov, Duane A Mitchell\",\"doi\":\"10.1186/s13073-024-01363-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma.</p><p><strong>Methods: </strong>We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods.</p><p><strong>Results: </strong>Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures.</p><p><strong>Conclusions: </strong>Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.</p>\",\"PeriodicalId\":12645,\"journal\":{\"name\":\"Genome Medicine\",\"volume\":\"16 1\",\"pages\":\"102\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13073-024-01363-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01363-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma.
Background: The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma.
Methods: We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods.
Results: Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures.
Conclusions: Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.