Hongtao Yu, Peter J. Greasley, Hiddo J. Lambers Heerspink, Philip Ambery, Christine Ahlstrom, Bengt Hamren, Anis A. Khan, David W. Boulton, K. Melissa Hallow
{"title":"静脉容量在内皮素 A 拮抗剂的液体潴留中的作用:RADAR 试验的数学建模。","authors":"Hongtao Yu, Peter J. Greasley, Hiddo J. Lambers Heerspink, Philip Ambery, Christine Ahlstrom, Bengt Hamren, Anis A. Khan, David W. Boulton, K. Melissa Hallow","doi":"10.1111/bph.16504","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Endothelin-1 (ET-1) receptor A (ETA) antagonists reduce proteinuria and prevent renal outcomes in chronic kidney disease (CKD) patients, but their utility has been limited because of associated fluid retention, resulting in increased heart failure risk. Understanding the mechanisms responsible for fluid retention could result in solutions that preserve renoprotective effects while mitigating fluid retention, but the complexity of the endothelin system has made identification of the underlying mechanisms challenging.</p>\n </section>\n \n <section>\n \n <h3> Approach</h3>\n \n <p>We utilized a previously developed mathematical model of ET-1 kinetics, ETA receptor antagonism, kidney function, haemodynamics, and sodium and water homeostasis to evaluate hypotheses for mechanisms of fluid retention with ETA antagonism. To do this, we simulated the RADAR clinical trial of atrasentan in patients with type 2 diabetes and CKD and evaluated the ability of the model to predict the observed decreases in haematocrit, urine albumin creatinine ratio (UACR), mean arterial pressure (MAP), and estimated glomerular filtration rate (eGFR).</p>\n </section>\n \n <section>\n \n <h3> Background and Key Results</h3>\n \n <p>An effect of ETA antagonism on venodilation and increased venous capacitance was found to be the critical mechanism necessary to reproduce the simultaneous decrease in both MAP and haematocrit observed in RADAR.</p>\n </section>\n \n <section>\n \n <h3> Conclusions and Impact</h3>\n \n <p>These findings indicate that fluid retention with ETA antagonism may not be caused by a direct antidiuretic effect within the kidney but is instead be an adaptive response to venodilation and increased venous capacity, which acutely tends to reduce cardiac filling pressure and cardiac output, and that fluid retention occurs in an attempt to maintain cardiac filling and cardiac output.</p>\n </section>\n </div>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bph.16504","citationCount":"0","resultStr":"{\"title\":\"The role of venous capacity in fluid retention with endothelin A antagonism: Mathematical modelling of the RADAR trial\",\"authors\":\"Hongtao Yu, Peter J. Greasley, Hiddo J. Lambers Heerspink, Philip Ambery, Christine Ahlstrom, Bengt Hamren, Anis A. Khan, David W. Boulton, K. Melissa Hallow\",\"doi\":\"10.1111/bph.16504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Endothelin-1 (ET-1) receptor A (ETA) antagonists reduce proteinuria and prevent renal outcomes in chronic kidney disease (CKD) patients, but their utility has been limited because of associated fluid retention, resulting in increased heart failure risk. Understanding the mechanisms responsible for fluid retention could result in solutions that preserve renoprotective effects while mitigating fluid retention, but the complexity of the endothelin system has made identification of the underlying mechanisms challenging.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Approach</h3>\\n \\n <p>We utilized a previously developed mathematical model of ET-1 kinetics, ETA receptor antagonism, kidney function, haemodynamics, and sodium and water homeostasis to evaluate hypotheses for mechanisms of fluid retention with ETA antagonism. To do this, we simulated the RADAR clinical trial of atrasentan in patients with type 2 diabetes and CKD and evaluated the ability of the model to predict the observed decreases in haematocrit, urine albumin creatinine ratio (UACR), mean arterial pressure (MAP), and estimated glomerular filtration rate (eGFR).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Background and Key Results</h3>\\n \\n <p>An effect of ETA antagonism on venodilation and increased venous capacitance was found to be the critical mechanism necessary to reproduce the simultaneous decrease in both MAP and haematocrit observed in RADAR.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions and Impact</h3>\\n \\n <p>These findings indicate that fluid retention with ETA antagonism may not be caused by a direct antidiuretic effect within the kidney but is instead be an adaptive response to venodilation and increased venous capacity, which acutely tends to reduce cardiac filling pressure and cardiac output, and that fluid retention occurs in an attempt to maintain cardiac filling and cardiac output.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9262,\"journal\":{\"name\":\"British Journal of Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bph.16504\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bph.16504\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bph.16504","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The role of venous capacity in fluid retention with endothelin A antagonism: Mathematical modelling of the RADAR trial
Background and Purpose
Endothelin-1 (ET-1) receptor A (ETA) antagonists reduce proteinuria and prevent renal outcomes in chronic kidney disease (CKD) patients, but their utility has been limited because of associated fluid retention, resulting in increased heart failure risk. Understanding the mechanisms responsible for fluid retention could result in solutions that preserve renoprotective effects while mitigating fluid retention, but the complexity of the endothelin system has made identification of the underlying mechanisms challenging.
Approach
We utilized a previously developed mathematical model of ET-1 kinetics, ETA receptor antagonism, kidney function, haemodynamics, and sodium and water homeostasis to evaluate hypotheses for mechanisms of fluid retention with ETA antagonism. To do this, we simulated the RADAR clinical trial of atrasentan in patients with type 2 diabetes and CKD and evaluated the ability of the model to predict the observed decreases in haematocrit, urine albumin creatinine ratio (UACR), mean arterial pressure (MAP), and estimated glomerular filtration rate (eGFR).
Background and Key Results
An effect of ETA antagonism on venodilation and increased venous capacitance was found to be the critical mechanism necessary to reproduce the simultaneous decrease in both MAP and haematocrit observed in RADAR.
Conclusions and Impact
These findings indicate that fluid retention with ETA antagonism may not be caused by a direct antidiuretic effect within the kidney but is instead be an adaptive response to venodilation and increased venous capacity, which acutely tends to reduce cardiac filling pressure and cardiac output, and that fluid retention occurs in an attempt to maintain cardiac filling and cardiac output.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.