{"title":"探索杰弗里流体在各向异性多孔介质中的稳定性:结合索雷特效应和微生物系统","authors":"S. Sridhar, M. Muthtamilselvan","doi":"10.1108/hff-02-2024-0145","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>D</mml:mi><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></span> is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">Ł</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math></span>. Indeed, elevating the values of <em>ζ</em> and <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>γ</mml:mi><mml:mo>′</mml:mo></mml:mrow></mml:math></span> in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>D</mml:mi><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></span> was determined to be <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mn>4</mml:mn><mml:msup><mml:mi>π</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math></span>at the critical wave number (<span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:mrow><mml:mo>ˇ</mml:mo></mml:mover></mml:mrow></mml:math></span>) of <em>π</em>.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"6 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring stability of Jeffrey fluids in anisotropic porous media: incorporating Soret effects and microbial systems\",\"authors\":\"S. Sridhar, M. Muthtamilselvan\",\"doi\":\"10.1108/hff-02-2024-0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number <span>\\n<mml:math display=\\\"inline\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>D</mml:mi><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></span> is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number <span>\\n<mml:math display=\\\"inline\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:msub><mml:mi mathvariant=\\\"normal\\\">Ł</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math></span>. Indeed, elevating the values of <em>ζ</em> and <span>\\n<mml:math display=\\\"inline\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mi>γ</mml:mi><mml:mo>′</mml:mo></mml:mrow></mml:math></span> in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number <span>\\n<mml:math display=\\\"inline\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>D</mml:mi><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></span> was determined to be <span>\\n<mml:math display=\\\"inline\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mn>4</mml:mn><mml:msup><mml:mi>π</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math></span>at the critical wave number (<span>\\n<mml:math display=\\\"inline\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:mrow><mml:mo>ˇ</mml:mo></mml:mover></mml:mrow></mml:math></span>) of <em>π</em>.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-02-2024-0145\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-02-2024-0145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Exploring stability of Jeffrey fluids in anisotropic porous media: incorporating Soret effects and microbial systems
Purpose
This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.
Design/methodology/approach
This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.
Findings
The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number RDa,c is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number Łe. Indeed, elevating the values of ζ and γ′ in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number RDa,c was determined to be 4π2at the critical wave number (δcˇ) of π.
Originality/value
The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf