图案表面之间的液桥动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Margarida S. Rodrigues , Rodrigo C.V. Coelho , Paulo I.C. Teixeira
{"title":"图案表面之间的液桥动力学","authors":"Margarida S. Rodrigues ,&nbsp;Rodrigo C.V. Coelho ,&nbsp;Paulo I.C. Teixeira","doi":"10.1016/j.physd.2024.134322","DOIUrl":null,"url":null,"abstract":"<div><p>We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002732/pdfft?md5=f118fd77314ddf0d2d7214a4b8122af4&pid=1-s2.0-S0167278924002732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of liquid bridges between patterned surfaces\",\"authors\":\"Margarida S. Rodrigues ,&nbsp;Rodrigo C.V. Coelho ,&nbsp;Paulo I.C. Teixeira\",\"doi\":\"10.1016/j.physd.2024.134322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002732/pdfft?md5=f118fd77314ddf0d2d7214a4b8122af4&pid=1-s2.0-S0167278924002732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们采用多组分伪势晶格玻尔兹曼方法,模拟了横跨由亲水和疏水交替条纹组成的两个平面水平固体基底之间间隙的单一垂直二维液桥的运动。这扩展了我们之前的工作,即基底是均匀亲水或疏水的。在稳态条件下,我们以图案波长的函数计算了以下内容:(i) 移动桥的速度场,特别是它们的(时间平均)末端速度;(ii) 移动桥的变形,以桥接触角偏离其平衡值来衡量;(iii) 使移动桥断裂的最小外力。此外,我们还发现,即使在图案波长与桥宽相比非常小的情况下,在图案基底之间移动的桥也无法映射到在具有一定有效接触角的均匀基底之间移动的桥上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of liquid bridges between patterned surfaces

We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信