Margarida S. Rodrigues , Rodrigo C.V. Coelho , Paulo I.C. Teixeira
{"title":"图案表面之间的液桥动力学","authors":"Margarida S. Rodrigues , Rodrigo C.V. Coelho , Paulo I.C. Teixeira","doi":"10.1016/j.physd.2024.134322","DOIUrl":null,"url":null,"abstract":"<div><p>We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002732/pdfft?md5=f118fd77314ddf0d2d7214a4b8122af4&pid=1-s2.0-S0167278924002732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of liquid bridges between patterned surfaces\",\"authors\":\"Margarida S. Rodrigues , Rodrigo C.V. Coelho , Paulo I.C. Teixeira\",\"doi\":\"10.1016/j.physd.2024.134322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002732/pdfft?md5=f118fd77314ddf0d2d7214a4b8122af4&pid=1-s2.0-S0167278924002732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dynamics of liquid bridges between patterned surfaces
We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.