SKT-IDS:基于西格码核变换和编码器-解码器架构的未知攻击检测方法

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"SKT-IDS:基于西格码核变换和编码器-解码器架构的未知攻击检测方法","authors":"","doi":"10.1016/j.cose.2024.104056","DOIUrl":null,"url":null,"abstract":"<div><p>Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely focuses on known attack detection, leaving a significant gap in research regarding unknown attack detection, where achieving a balance between false alarm rate (identifying normal traffic as attack traffic) and recall rate of unknown attack detection remains challenging. To address these gaps, we propose a novel IDS based on Sigmoid Kernel Transformation and Encoder-Decoder architecture, namely SKT-IDS, where SKT stands for Sigmoid Kernel Transformation. We start with pre-training an attention-based encoder for coarse-grained intrusion detection. Then, we use this encoder to build an encoder–decoder model specifically for 0-day attack detection, training it solely on known traffic using the cosine similarity loss function. To enhance detection, we introduce a Sigmoid Kernel Transformation for feature engineering, improving the discriminative ability between normal traffic and 0-day attacks. Finally, we conducted a series of ablation and comparative experiments on the NSL-KDD and CSE-CIC-IDS2018 datasets, confirming the effectiveness of our proposed method. With a false alarm rate of 1%, we achieved recall rates for unknown attack detection of 65% and 69% on the two datasets, respectively, demonstrating significant performance improvements compared to existing state-of-the-art models.</p></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SKT-IDS: Unknown attack detection method based on Sigmoid Kernel Transformation and encoder–decoder architecture\",\"authors\":\"\",\"doi\":\"10.1016/j.cose.2024.104056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely focuses on known attack detection, leaving a significant gap in research regarding unknown attack detection, where achieving a balance between false alarm rate (identifying normal traffic as attack traffic) and recall rate of unknown attack detection remains challenging. To address these gaps, we propose a novel IDS based on Sigmoid Kernel Transformation and Encoder-Decoder architecture, namely SKT-IDS, where SKT stands for Sigmoid Kernel Transformation. We start with pre-training an attention-based encoder for coarse-grained intrusion detection. Then, we use this encoder to build an encoder–decoder model specifically for 0-day attack detection, training it solely on known traffic using the cosine similarity loss function. To enhance detection, we introduce a Sigmoid Kernel Transformation for feature engineering, improving the discriminative ability between normal traffic and 0-day attacks. Finally, we conducted a series of ablation and comparative experiments on the NSL-KDD and CSE-CIC-IDS2018 datasets, confirming the effectiveness of our proposed method. With a false alarm rate of 1%, we achieved recall rates for unknown attack detection of 65% and 69% on the two datasets, respectively, demonstrating significant performance improvements compared to existing state-of-the-art models.</p></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824003614\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824003614","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

入侵检测系统(IDS)是网络安全中监控网络流量和识别潜在攻击的关键。现有的入侵检测系统研究主要集中在已知攻击检测方面,在未知攻击检测方面的研究还存在很大差距,要在误报率(将正常流量识别为攻击流量)和未知攻击检测的召回率之间取得平衡仍具有挑战性。为了弥补这些差距,我们提出了一种基于西格码核变换和编码器-解码器架构的新型 IDS,即 SKT-IDS,其中 SKT 代表西格码核变换。我们首先预训练一个基于注意力的编码器,用于粗粒度入侵检测。然后,我们使用该编码器建立一个专门用于 0 天攻击检测的编码器-解码器模型,仅使用余弦相似性损失函数对已知流量进行训练。为了增强检测能力,我们引入了西格莫德核变换用于特征工程,从而提高了正常流量和 0 天攻击之间的区分能力。最后,我们在 NSL-KDD 和 CSE-CIC-IDS2018 数据集上进行了一系列消减和对比实验,证实了我们提出的方法的有效性。在误报率为 1% 的情况下,我们在这两个数据集上的未知攻击检测召回率分别达到了 65% 和 69%,与现有的最先进模型相比,性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SKT-IDS: Unknown attack detection method based on Sigmoid Kernel Transformation and encoder–decoder architecture

Intrusion Detection Systems (IDS) are crucial in cybersecurity for monitoring network traffic and identifying potential attacks. Existing IDS research largely focuses on known attack detection, leaving a significant gap in research regarding unknown attack detection, where achieving a balance between false alarm rate (identifying normal traffic as attack traffic) and recall rate of unknown attack detection remains challenging. To address these gaps, we propose a novel IDS based on Sigmoid Kernel Transformation and Encoder-Decoder architecture, namely SKT-IDS, where SKT stands for Sigmoid Kernel Transformation. We start with pre-training an attention-based encoder for coarse-grained intrusion detection. Then, we use this encoder to build an encoder–decoder model specifically for 0-day attack detection, training it solely on known traffic using the cosine similarity loss function. To enhance detection, we introduce a Sigmoid Kernel Transformation for feature engineering, improving the discriminative ability between normal traffic and 0-day attacks. Finally, we conducted a series of ablation and comparative experiments on the NSL-KDD and CSE-CIC-IDS2018 datasets, confirming the effectiveness of our proposed method. With a false alarm rate of 1%, we achieved recall rates for unknown attack detection of 65% and 69% on the two datasets, respectively, demonstrating significant performance improvements compared to existing state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信