Yating Zhu MM , Chenguang Zhang PhD , Qiuyu Yin MM , Wenting Xu PhD , Yulou Luo MB , Jianghua Ou PhD
{"title":"FOXO4 通过抑制自噬抑制三阴性乳腺癌的顺铂耐药性","authors":"Yating Zhu MM , Chenguang Zhang PhD , Qiuyu Yin MM , Wenting Xu PhD , Yulou Luo MB , Jianghua Ou PhD","doi":"10.1016/j.amjms.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Resistance to chemotherapy containing cisplatin (DDP) is a main challenge in the treatment of triple-negative breast cancer (TNBC). Forkhead box O4 (FOXO4) is frequently downregulated in DDP-resistant cells. However, it is unclear whether FOXO4 down-regulation is related to DDP resistance. Here, we investigated the relationship between FOXO4 and DDP resistance in TNBC.</div></div><div><h3>Methods</h3><div>We established the DDP-resistant cell lines MDA-MB-231/DDP and BT-549/DDP through in vitro selection. CCK-8 and colony formation assays analyzed cell growth. The resistance index was calculated. Cell autophagy was evaluated. Western blotting and qRT-PCR measured protein and gene expression. The binding between FOXO4 and TGF-β1 was determined by the dual-luciferase reporter assay.</div></div><div><h3>Results</h3><div>FOXO4 expression was significantly lower in MDA-MB-231/DDP and BT-549/DDP cells. FOXO4 overexpression increased the sensitivity of TNBC cells to DDP. The PI3K class Ⅲ and Beclin-1 levels and LC3-II/LC3-I ratio elevated significantly in DDP-resistant cells. Moreover, the autophagic flux was enhanced in DDP-resistant cells. 3-MA enhanced the sensitivity of TNBC cells to DDP by inhibiting autophagy. Overexpression of FOXO4, treatment with 3-MA, and their combination significantly reduced the drug resistance index. FOXO4 directly targeted TGF-β1. Additionally, TGF-β1 knockdown inhibited autophagy and restored the sensitivity of DDP-resistant cells to DDP. Mechanistically, FOXO4 affected TNBC resistance to DDP by regulating autophagy and TGF-β1.</div></div><div><h3>Conclusion</h3><div>FOXO4 overexpression, in combination with autophagy inhibitors, can significantly improve the sensitivity of TNBC-resistant cells to DDP. These findings reveal the role and mechanism of FOXO4 in DDP sensitivity and may provide evidence for the development of TNBC therapies.</div></div>","PeriodicalId":55526,"journal":{"name":"American Journal of the Medical Sciences","volume":"369 2","pages":"Pages 252-263"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOXO4 suppresses cisplatin resistance of triple-negative breast cancer by inhibiting autophagy\",\"authors\":\"Yating Zhu MM , Chenguang Zhang PhD , Qiuyu Yin MM , Wenting Xu PhD , Yulou Luo MB , Jianghua Ou PhD\",\"doi\":\"10.1016/j.amjms.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Resistance to chemotherapy containing cisplatin (DDP) is a main challenge in the treatment of triple-negative breast cancer (TNBC). Forkhead box O4 (FOXO4) is frequently downregulated in DDP-resistant cells. However, it is unclear whether FOXO4 down-regulation is related to DDP resistance. Here, we investigated the relationship between FOXO4 and DDP resistance in TNBC.</div></div><div><h3>Methods</h3><div>We established the DDP-resistant cell lines MDA-MB-231/DDP and BT-549/DDP through in vitro selection. CCK-8 and colony formation assays analyzed cell growth. The resistance index was calculated. Cell autophagy was evaluated. Western blotting and qRT-PCR measured protein and gene expression. The binding between FOXO4 and TGF-β1 was determined by the dual-luciferase reporter assay.</div></div><div><h3>Results</h3><div>FOXO4 expression was significantly lower in MDA-MB-231/DDP and BT-549/DDP cells. FOXO4 overexpression increased the sensitivity of TNBC cells to DDP. The PI3K class Ⅲ and Beclin-1 levels and LC3-II/LC3-I ratio elevated significantly in DDP-resistant cells. Moreover, the autophagic flux was enhanced in DDP-resistant cells. 3-MA enhanced the sensitivity of TNBC cells to DDP by inhibiting autophagy. Overexpression of FOXO4, treatment with 3-MA, and their combination significantly reduced the drug resistance index. FOXO4 directly targeted TGF-β1. Additionally, TGF-β1 knockdown inhibited autophagy and restored the sensitivity of DDP-resistant cells to DDP. Mechanistically, FOXO4 affected TNBC resistance to DDP by regulating autophagy and TGF-β1.</div></div><div><h3>Conclusion</h3><div>FOXO4 overexpression, in combination with autophagy inhibitors, can significantly improve the sensitivity of TNBC-resistant cells to DDP. These findings reveal the role and mechanism of FOXO4 in DDP sensitivity and may provide evidence for the development of TNBC therapies.</div></div>\",\"PeriodicalId\":55526,\"journal\":{\"name\":\"American Journal of the Medical Sciences\",\"volume\":\"369 2\",\"pages\":\"Pages 252-263\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of the Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0002962924014034\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of the Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002962924014034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
FOXO4 suppresses cisplatin resistance of triple-negative breast cancer by inhibiting autophagy
Background
Resistance to chemotherapy containing cisplatin (DDP) is a main challenge in the treatment of triple-negative breast cancer (TNBC). Forkhead box O4 (FOXO4) is frequently downregulated in DDP-resistant cells. However, it is unclear whether FOXO4 down-regulation is related to DDP resistance. Here, we investigated the relationship between FOXO4 and DDP resistance in TNBC.
Methods
We established the DDP-resistant cell lines MDA-MB-231/DDP and BT-549/DDP through in vitro selection. CCK-8 and colony formation assays analyzed cell growth. The resistance index was calculated. Cell autophagy was evaluated. Western blotting and qRT-PCR measured protein and gene expression. The binding between FOXO4 and TGF-β1 was determined by the dual-luciferase reporter assay.
Results
FOXO4 expression was significantly lower in MDA-MB-231/DDP and BT-549/DDP cells. FOXO4 overexpression increased the sensitivity of TNBC cells to DDP. The PI3K class Ⅲ and Beclin-1 levels and LC3-II/LC3-I ratio elevated significantly in DDP-resistant cells. Moreover, the autophagic flux was enhanced in DDP-resistant cells. 3-MA enhanced the sensitivity of TNBC cells to DDP by inhibiting autophagy. Overexpression of FOXO4, treatment with 3-MA, and their combination significantly reduced the drug resistance index. FOXO4 directly targeted TGF-β1. Additionally, TGF-β1 knockdown inhibited autophagy and restored the sensitivity of DDP-resistant cells to DDP. Mechanistically, FOXO4 affected TNBC resistance to DDP by regulating autophagy and TGF-β1.
Conclusion
FOXO4 overexpression, in combination with autophagy inhibitors, can significantly improve the sensitivity of TNBC-resistant cells to DDP. These findings reveal the role and mechanism of FOXO4 in DDP sensitivity and may provide evidence for the development of TNBC therapies.
期刊介绍:
The American Journal of The Medical Sciences (AJMS), founded in 1820, is the 2nd oldest medical journal in the United States. The AJMS is the official journal of the Southern Society for Clinical Investigation (SSCI). The SSCI is dedicated to the advancement of medical research and the exchange of knowledge, information and ideas. Its members are committed to mentoring future generations of medical investigators and promoting careers in academic medicine. The AJMS publishes, on a monthly basis, peer-reviewed articles in the field of internal medicine and its subspecialties, which include:
Original clinical and basic science investigations
Review articles
Online Images in the Medical Sciences
Special Features Include:
Patient-Centered Focused Reviews
History of Medicine
The Science of Medical Education.