{"title":"FOXO4 通过抑制自噬抑制三阴性乳腺癌的顺铂耐药性","authors":"Yating Zhu, Chenguang Zhang, Qiuyu Yin, Wenting Xu, Yulou Luo, Jianghua Ou","doi":"10.1016/j.amjms.2024.08.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resistance to chemotherapy containing cisplatin (DDP) is a main challenge in the treatment of triple-negative breast cancer (TNBC). Forkhead box O4 (FOXO4) is frequently downregulated in DDP-resistant cells. However, it is unclear whether FOXO4 down-regulation is related to DDP resistance. Here, we investigated the relationship between FOXO4 and DDP resistance in TNBC.</p><p><strong>Methods: </strong>We established the DDP-resistant cell lines MDA-MB-231/DDP and BT-549/DDP through in vitro selection. CCK-8 and colony formation assays analyzed cell growth. The resistance index was calculated. Cell autophagy was evaluated. Western blotting and qRT-PCR measured protein and gene expression. The binding between FOXO4 and TGF-β1 was determined by the dual-luciferase reporter assay.</p><p><strong>Results: </strong>FOXO4 expression was significantly lower in MDA-MB-231/DDP and BT-549/DDP cells. FOXO4 overexpression increased the sensitivity of TNBC cells to DDP. The PI3K class Ⅲ and Beclin-1 levels and LC3-II/LC3-I ratio elevated significantly in DDP-resistant cells. Moreover, the autophagic flux was enhanced in DDP-resistant cells. 3-MA enhanced the sensitivity of TNBC cells to DDP by inhibiting autophagy. Overexpression of FOXO4, treatment with 3-MA, and their combination significantly reduced the drug resistance index. FOXO4 directly targeted TGF-β1. Additionally, TGF-β1 knockdown inhibited autophagy and restored the sensitivity of DDP-resistant cells to DDP. Mechanistically, FOXO4 affected TNBC resistance to DDP by regulating autophagy and TGF-β1.</p><p><strong>Conclusion: </strong>FOXO4 overexpression, in combination with autophagy inhibitors, can significantly improve the sensitivity of TNBC-resistant cells to DDP. These findings reveal the role and mechanism of FOXO4 in DDP sensitivity and may provide evidence for the development of TNBC therapies.</p>","PeriodicalId":94223,"journal":{"name":"The American journal of the medical sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOXO4 suppresses cisplatin resistance of triple-negative breast cancer by inhibiting autophagy.\",\"authors\":\"Yating Zhu, Chenguang Zhang, Qiuyu Yin, Wenting Xu, Yulou Luo, Jianghua Ou\",\"doi\":\"10.1016/j.amjms.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Resistance to chemotherapy containing cisplatin (DDP) is a main challenge in the treatment of triple-negative breast cancer (TNBC). Forkhead box O4 (FOXO4) is frequently downregulated in DDP-resistant cells. However, it is unclear whether FOXO4 down-regulation is related to DDP resistance. Here, we investigated the relationship between FOXO4 and DDP resistance in TNBC.</p><p><strong>Methods: </strong>We established the DDP-resistant cell lines MDA-MB-231/DDP and BT-549/DDP through in vitro selection. CCK-8 and colony formation assays analyzed cell growth. The resistance index was calculated. Cell autophagy was evaluated. Western blotting and qRT-PCR measured protein and gene expression. The binding between FOXO4 and TGF-β1 was determined by the dual-luciferase reporter assay.</p><p><strong>Results: </strong>FOXO4 expression was significantly lower in MDA-MB-231/DDP and BT-549/DDP cells. FOXO4 overexpression increased the sensitivity of TNBC cells to DDP. The PI3K class Ⅲ and Beclin-1 levels and LC3-II/LC3-I ratio elevated significantly in DDP-resistant cells. Moreover, the autophagic flux was enhanced in DDP-resistant cells. 3-MA enhanced the sensitivity of TNBC cells to DDP by inhibiting autophagy. Overexpression of FOXO4, treatment with 3-MA, and their combination significantly reduced the drug resistance index. FOXO4 directly targeted TGF-β1. Additionally, TGF-β1 knockdown inhibited autophagy and restored the sensitivity of DDP-resistant cells to DDP. Mechanistically, FOXO4 affected TNBC resistance to DDP by regulating autophagy and TGF-β1.</p><p><strong>Conclusion: </strong>FOXO4 overexpression, in combination with autophagy inhibitors, can significantly improve the sensitivity of TNBC-resistant cells to DDP. These findings reveal the role and mechanism of FOXO4 in DDP sensitivity and may provide evidence for the development of TNBC therapies.</p>\",\"PeriodicalId\":94223,\"journal\":{\"name\":\"The American journal of the medical sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of the medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.amjms.2024.08.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of the medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.amjms.2024.08.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FOXO4 suppresses cisplatin resistance of triple-negative breast cancer by inhibiting autophagy.
Background: Resistance to chemotherapy containing cisplatin (DDP) is a main challenge in the treatment of triple-negative breast cancer (TNBC). Forkhead box O4 (FOXO4) is frequently downregulated in DDP-resistant cells. However, it is unclear whether FOXO4 down-regulation is related to DDP resistance. Here, we investigated the relationship between FOXO4 and DDP resistance in TNBC.
Methods: We established the DDP-resistant cell lines MDA-MB-231/DDP and BT-549/DDP through in vitro selection. CCK-8 and colony formation assays analyzed cell growth. The resistance index was calculated. Cell autophagy was evaluated. Western blotting and qRT-PCR measured protein and gene expression. The binding between FOXO4 and TGF-β1 was determined by the dual-luciferase reporter assay.
Results: FOXO4 expression was significantly lower in MDA-MB-231/DDP and BT-549/DDP cells. FOXO4 overexpression increased the sensitivity of TNBC cells to DDP. The PI3K class Ⅲ and Beclin-1 levels and LC3-II/LC3-I ratio elevated significantly in DDP-resistant cells. Moreover, the autophagic flux was enhanced in DDP-resistant cells. 3-MA enhanced the sensitivity of TNBC cells to DDP by inhibiting autophagy. Overexpression of FOXO4, treatment with 3-MA, and their combination significantly reduced the drug resistance index. FOXO4 directly targeted TGF-β1. Additionally, TGF-β1 knockdown inhibited autophagy and restored the sensitivity of DDP-resistant cells to DDP. Mechanistically, FOXO4 affected TNBC resistance to DDP by regulating autophagy and TGF-β1.
Conclusion: FOXO4 overexpression, in combination with autophagy inhibitors, can significantly improve the sensitivity of TNBC-resistant cells to DDP. These findings reveal the role and mechanism of FOXO4 in DDP sensitivity and may provide evidence for the development of TNBC therapies.