Andrej Depperschmidt , Andreas Greven , Peter Pfaffelhuber
{"title":"对偶性与马氏问题的良好提出性","authors":"Andrej Depperschmidt , Andreas Greven , Peter Pfaffelhuber","doi":"10.1016/j.tpb.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>For two Polish state spaces <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>, and an operator <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>, we obtain existence and uniqueness of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>-martingale problem provided there is a bounded continuous duality function <span><math><mi>H</mi></math></span> on <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> together with a dual process <span><math><mi>Y</mi></math></span> on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span> which is the unique solution of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>-martingale problem. For the corresponding solutions <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, duality with respect to a function <span><math><mi>H</mi></math></span> in its simplest form means that the relation <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>]</mo></mrow><mo>=</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span> holds for all <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. While duality is well-known to imply uniqueness of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>-martingale problem, we give here a set of conditions under which duality also implies existence without using approximating sequences of processes of a different kind (e.g. jump processes to approximate diffusions) which is a widespread strategy for proving existence of solutions of martingale problems. Given the process <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and a duality function <span><math><mi>H</mi></math></span>, to prove existence of <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> one has to show that the r.h.s. of the duality relation defines for each <span><math><mi>y</mi></math></span> a measure on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>, i.e. there are transition kernels <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> from <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> such that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow><mo>=</mo><mo>∫</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mspace></mspace><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> and all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</p><p>As examples, we treat resampling and branching models, such as the Fleming–Viot measure-valued diffusion and its spatial counterparts (with both, discrete and continuum space), as well as branching systems, such as Feller’s branching diffusion. While our main result as well as all examples come with (locally) compact state spaces, we discuss the strategy to lift our results to genealogy-valued processes or historical processes, leading to non-compact (discrete and continuum) state spaces. Such applications will be tackled in forthcoming work based on the present article.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"159 ","pages":"Pages 59-73"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000765/pdfft?md5=3a0d0ba95ef090a854236fc78278e994&pid=1-s2.0-S0040580924000765-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Duality and the well-posedness of a martingale problem\",\"authors\":\"Andrej Depperschmidt , Andreas Greven , Peter Pfaffelhuber\",\"doi\":\"10.1016/j.tpb.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For two Polish state spaces <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>, and an operator <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>, we obtain existence and uniqueness of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>-martingale problem provided there is a bounded continuous duality function <span><math><mi>H</mi></math></span> on <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> together with a dual process <span><math><mi>Y</mi></math></span> on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span> which is the unique solution of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>-martingale problem. For the corresponding solutions <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, duality with respect to a function <span><math><mi>H</mi></math></span> in its simplest form means that the relation <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>]</mo></mrow><mo>=</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span> holds for all <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. While duality is well-known to imply uniqueness of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>-martingale problem, we give here a set of conditions under which duality also implies existence without using approximating sequences of processes of a different kind (e.g. jump processes to approximate diffusions) which is a widespread strategy for proving existence of solutions of martingale problems. Given the process <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and a duality function <span><math><mi>H</mi></math></span>, to prove existence of <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> one has to show that the r.h.s. of the duality relation defines for each <span><math><mi>y</mi></math></span> a measure on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>, i.e. there are transition kernels <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> from <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> such that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow><mo>=</mo><mo>∫</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mspace></mspace><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> and all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</p><p>As examples, we treat resampling and branching models, such as the Fleming–Viot measure-valued diffusion and its spatial counterparts (with both, discrete and continuum space), as well as branching systems, such as Feller’s branching diffusion. While our main result as well as all examples come with (locally) compact state spaces, we discuss the strategy to lift our results to genealogy-valued processes or historical processes, leading to non-compact (discrete and continuum) state spaces. Such applications will be tackled in forthcoming work based on the present article.</p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"159 \",\"pages\":\"Pages 59-73\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0040580924000765/pdfft?md5=3a0d0ba95ef090a854236fc78278e994&pid=1-s2.0-S0040580924000765-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580924000765\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000765","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
对于两个波兰状态空间 EX 和 EY 以及一个算子 GX,只要在 EX×EY 上存在一个有界连续对偶函数 H 以及在 EY 上存在一个对偶过程 Y,且该过程是 GY-鞅问题的唯一解,我们就能得到 GX-鞅问题的存在性和唯一性。对于相应的解[公式:见正文]和[公式:见正文],关于函数 H 的对偶性的最简单形式是指对于所有 (x,y)∈EX×EY 且 t≥0 的关系 Ex[H(Xt,y)]=Ey[H(x,Yt)]成立。众所周知,对偶性意味着 GX-马汀厄尔问题的唯一性,我们在此给出一组条件,在这些条件下,对偶性也意味着存在性,而无需使用另一种过程的近似序列(例如近似扩散的跃迁过程),这是证明马汀厄尔问题解的存在性的一种普遍策略。给定过程[公式:见正文]和对偶函数 H,要证明[公式:见正文]的存在性,必须证明对偶关系的 r.h.s. 为每个 y 定义了 EX 上的一个度量,即存在从 EX 到 EX 的过渡核[公式:见正文],对于所有 (x,y)∈EX×EY 和所有 t≥0,Ey[H(x,Yt)]=∫μt(x,dx')H(x',y)。作为示例,我们处理了重采样和分支模型,如弗莱明-维奥特(Fleming-Viot)度量值扩散及其空间对应模型(包括离散空间和连续空间),以及分支系统,如费勒的分支扩散。虽然我们的主要结果和所有例子都涉及(局部)紧凑状态空间,但我们讨论了将我们的结果提升到谱系值过程或历史过程的策略,从而导致非紧凑(离散和连续)状态空间。在本文的基础上,我们将在接下来的工作中讨论这类应用。
Duality and the well-posedness of a martingale problem
For two Polish state spaces and , and an operator , we obtain existence and uniqueness of a -martingale problem provided there is a bounded continuous duality function on together with a dual process on which is the unique solution of a -martingale problem. For the corresponding solutions and , duality with respect to a function in its simplest form means that the relation holds for all and . While duality is well-known to imply uniqueness of the -martingale problem, we give here a set of conditions under which duality also implies existence without using approximating sequences of processes of a different kind (e.g. jump processes to approximate diffusions) which is a widespread strategy for proving existence of solutions of martingale problems. Given the process and a duality function , to prove existence of one has to show that the r.h.s. of the duality relation defines for each a measure on , i.e. there are transition kernels from to such that for all and all .
As examples, we treat resampling and branching models, such as the Fleming–Viot measure-valued diffusion and its spatial counterparts (with both, discrete and continuum space), as well as branching systems, such as Feller’s branching diffusion. While our main result as well as all examples come with (locally) compact state spaces, we discuss the strategy to lift our results to genealogy-valued processes or historical processes, leading to non-compact (discrete and continuum) state spaces. Such applications will be tackled in forthcoming work based on the present article.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.