开发和评估基于人工智能的工作流程,以确定患者门户网站信息的优先级。

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2024-08-16 eCollection Date: 2024-10-01 DOI:10.1093/jamiaopen/ooae078
Jie Yang, Jonathan So, Hao Zhang, Simon Jones, Denise M Connolly, Claudia Golding, Esmelin Griffes, Adam C Szerencsy, Tzer Jason Wu, Yindalon Aphinyanaphongs, Vincent J Major
{"title":"开发和评估基于人工智能的工作流程,以确定患者门户网站信息的优先级。","authors":"Jie Yang, Jonathan So, Hao Zhang, Simon Jones, Denise M Connolly, Claudia Golding, Esmelin Griffes, Adam C Szerencsy, Tzer Jason Wu, Yindalon Aphinyanaphongs, Vincent J Major","doi":"10.1093/jamiaopen/ooae078","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Accelerating demand for patient messaging has impacted the practice of many providers. Messages are not recommended for urgent medical issues, but some do require rapid attention. This presents an opportunity for artificial intelligence (AI) methods to prioritize review of messages. Our study aimed to highlight some patient portal messages for prioritized review using a custom AI system integrated into the electronic health record (EHR).</p><p><strong>Materials and methods: </strong>We developed a Bidirectional Encoder Representations from Transformers (BERT)-based large language model using 40 132 patient-sent messages to identify patterns involving high acuity topics that warrant an immediate callback. The model was then implemented into 2 shared pools of patient messages managed by dozens of registered nurses. A primary outcome, such as the time before messages were read, was evaluated with a difference-in-difference methodology.</p><p><strong>Results: </strong>Model validation on an expert-reviewed dataset (<i>n</i> = 7260) yielded very promising performance (C-statistic = 97%, average-precision = 72%). A binarized output (precision = 67%, sensitivity = 63%) was integrated into the EHR for 2 years. In a pre-post analysis (<i>n</i> = 396 466), an improvement exceeding the trend was observed in the time high-scoring messages sit unread (21 minutes, 63 vs 42 for messages sent outside business hours).</p><p><strong>Discussion: </strong>Our work shows great promise in improving care when AI is aligned with human workflow. Future work involves audience expansion, aiding users with suggested actions, and drafting responses.</p><p><strong>Conclusion: </strong>Many patients utilize patient portal messages, and while most messages are routine, a small fraction describe alarming symptoms. Our AI-based workflow shortens the turnaround time to get a trained clinician to review these messages to provide safer, higher-quality care.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of an artificial intelligence-based workflow for the prioritization of patient portal messages.\",\"authors\":\"Jie Yang, Jonathan So, Hao Zhang, Simon Jones, Denise M Connolly, Claudia Golding, Esmelin Griffes, Adam C Szerencsy, Tzer Jason Wu, Yindalon Aphinyanaphongs, Vincent J Major\",\"doi\":\"10.1093/jamiaopen/ooae078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Accelerating demand for patient messaging has impacted the practice of many providers. Messages are not recommended for urgent medical issues, but some do require rapid attention. This presents an opportunity for artificial intelligence (AI) methods to prioritize review of messages. Our study aimed to highlight some patient portal messages for prioritized review using a custom AI system integrated into the electronic health record (EHR).</p><p><strong>Materials and methods: </strong>We developed a Bidirectional Encoder Representations from Transformers (BERT)-based large language model using 40 132 patient-sent messages to identify patterns involving high acuity topics that warrant an immediate callback. The model was then implemented into 2 shared pools of patient messages managed by dozens of registered nurses. A primary outcome, such as the time before messages were read, was evaluated with a difference-in-difference methodology.</p><p><strong>Results: </strong>Model validation on an expert-reviewed dataset (<i>n</i> = 7260) yielded very promising performance (C-statistic = 97%, average-precision = 72%). A binarized output (precision = 67%, sensitivity = 63%) was integrated into the EHR for 2 years. In a pre-post analysis (<i>n</i> = 396 466), an improvement exceeding the trend was observed in the time high-scoring messages sit unread (21 minutes, 63 vs 42 for messages sent outside business hours).</p><p><strong>Discussion: </strong>Our work shows great promise in improving care when AI is aligned with human workflow. Future work involves audience expansion, aiding users with suggested actions, and drafting responses.</p><p><strong>Conclusion: </strong>Many patients utilize patient portal messages, and while most messages are routine, a small fraction describe alarming symptoms. Our AI-based workflow shortens the turnaround time to get a trained clinician to review these messages to provide safer, higher-quality care.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooae078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目标:患者信息需求的加速增长影响了许多医疗服务提供者的工作。对于紧急医疗问题,不建议发送信息,但有些问题确实需要快速关注。这就为人工智能(AI)方法提供了一个机会,可以对信息进行优先审核。我们的研究旨在使用集成到电子健康记录(EHR)中的定制人工智能系统,突出显示一些患者门户信息,以便优先审核:我们使用 40 132 条患者发送的信息开发了一个基于双向编码器变换器表征(BERT)的大型语言模型,以识别涉及需要立即回电的高度敏感话题的模式。该模型随后被应用到由数十名注册护士管理的两个病人信息共享池中。主要结果(如信息被阅读前的时间)采用差异法进行评估:结果:在专家评审的数据集(n = 7260)上进行模型验证,结果表明该模型性能良好(C 统计量 = 97%,平均精度 = 72%)。二值化输出(精确度 = 67%,灵敏度 = 63%)被整合到电子病历中,为期两年。在一项前后分析(n = 396 466)中,观察到高分信息未读时间的改善超过了趋势(21 分钟,工作时间外发送的信息为 63 分钟,工作时间内发送的信息为 42 分钟):我们的工作表明,当人工智能与人类工作流程相结合时,在改善护理方面大有可为。未来的工作包括扩大受众范围、通过建议的操作帮助用户以及起草回复:许多患者都在使用患者门户网站的信息,虽然大多数信息都是常规信息,但也有一小部分描述了令人担忧的症状。我们基于人工智能的工作流程缩短了让训练有素的临床医生查看这些信息的周转时间,从而提供更安全、更高质量的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and evaluation of an artificial intelligence-based workflow for the prioritization of patient portal messages.

Objectives: Accelerating demand for patient messaging has impacted the practice of many providers. Messages are not recommended for urgent medical issues, but some do require rapid attention. This presents an opportunity for artificial intelligence (AI) methods to prioritize review of messages. Our study aimed to highlight some patient portal messages for prioritized review using a custom AI system integrated into the electronic health record (EHR).

Materials and methods: We developed a Bidirectional Encoder Representations from Transformers (BERT)-based large language model using 40 132 patient-sent messages to identify patterns involving high acuity topics that warrant an immediate callback. The model was then implemented into 2 shared pools of patient messages managed by dozens of registered nurses. A primary outcome, such as the time before messages were read, was evaluated with a difference-in-difference methodology.

Results: Model validation on an expert-reviewed dataset (n = 7260) yielded very promising performance (C-statistic = 97%, average-precision = 72%). A binarized output (precision = 67%, sensitivity = 63%) was integrated into the EHR for 2 years. In a pre-post analysis (n = 396 466), an improvement exceeding the trend was observed in the time high-scoring messages sit unread (21 minutes, 63 vs 42 for messages sent outside business hours).

Discussion: Our work shows great promise in improving care when AI is aligned with human workflow. Future work involves audience expansion, aiding users with suggested actions, and drafting responses.

Conclusion: Many patients utilize patient portal messages, and while most messages are routine, a small fraction describe alarming symptoms. Our AI-based workflow shortens the turnaround time to get a trained clinician to review these messages to provide safer, higher-quality care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信