Xin Li , Jianxin Qian , Jiahua Xu , Haoran Bai , Jinzu Yang , Ling Chen
{"title":"NRF2通过调节AKR1B1抑制RSL3诱导的胃癌铁变态反应","authors":"Xin Li , Jianxin Qian , Jiahua Xu , Haoran Bai , Jinzu Yang , Ling Chen","doi":"10.1016/j.yexcr.2024.114210","DOIUrl":null,"url":null,"abstract":"<div><p>Gastric cancer is a malignant tumor associated with a high mortality rate. Recently, emerging evidence has shown that ferroptosis, a regulated form of cell death induced by iron (Fe)-dependent lipid peroxidation. Nuclear factor E2 related factor 2 (NRF2) is a key regulator of intracellular oxidation homeostasis that plays a pivotal role in controlling lipid peroxidation, which is closely related to the process of ferroptosis. However, the molecular mechanism of NRF2 on ferroptosis remains to be investigated in gastric cancer. In our study, NRF 2 was found to transcriptionally activate Aldo-keto reductase 1 member B1 (AKR1B1) expression in gastric cancer. AKR1B1 is involved in the regulation of lipid metabolism by removing the aldehyde group of glutathione. We found that AKR1B1 is highly expressed in gastric cancer and is associated with a poor prognosis of the patients. In vitro experiments found that AKR1B1 has the ability to promote the proliferation and invasion of gastric cancer cells. AKR1B1 inhibited RSL3-induced ferroptosis in gastric cancer by reducing reactive oxygen species accumulation and lipid peroxidation, as well as decreasing intracellular ferrous ion and malondialdehyde expression and increasing glutathione expression. Our study demonstrated that AKR1B1 resisted RSL3-induced ferroptosis by regulating GPX4, PTGS2 and ACSL4, which was further demonstrated in a xenograft nude mouse model. Our work reveals a critical role for the AKR1B1 in the resistance to RSL3-induced ferroptosis in gastric cancer.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 1","pages":"Article 114210"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NRF2 inhibits RSL3 induced ferroptosis in gastric cancer through regulation of AKR1B1\",\"authors\":\"Xin Li , Jianxin Qian , Jiahua Xu , Haoran Bai , Jinzu Yang , Ling Chen\",\"doi\":\"10.1016/j.yexcr.2024.114210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gastric cancer is a malignant tumor associated with a high mortality rate. Recently, emerging evidence has shown that ferroptosis, a regulated form of cell death induced by iron (Fe)-dependent lipid peroxidation. Nuclear factor E2 related factor 2 (NRF2) is a key regulator of intracellular oxidation homeostasis that plays a pivotal role in controlling lipid peroxidation, which is closely related to the process of ferroptosis. However, the molecular mechanism of NRF2 on ferroptosis remains to be investigated in gastric cancer. In our study, NRF 2 was found to transcriptionally activate Aldo-keto reductase 1 member B1 (AKR1B1) expression in gastric cancer. AKR1B1 is involved in the regulation of lipid metabolism by removing the aldehyde group of glutathione. We found that AKR1B1 is highly expressed in gastric cancer and is associated with a poor prognosis of the patients. In vitro experiments found that AKR1B1 has the ability to promote the proliferation and invasion of gastric cancer cells. AKR1B1 inhibited RSL3-induced ferroptosis in gastric cancer by reducing reactive oxygen species accumulation and lipid peroxidation, as well as decreasing intracellular ferrous ion and malondialdehyde expression and increasing glutathione expression. Our study demonstrated that AKR1B1 resisted RSL3-induced ferroptosis by regulating GPX4, PTGS2 and ACSL4, which was further demonstrated in a xenograft nude mouse model. Our work reveals a critical role for the AKR1B1 in the resistance to RSL3-induced ferroptosis in gastric cancer.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 1\",\"pages\":\"Article 114210\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001448272400301X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448272400301X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
NRF2 inhibits RSL3 induced ferroptosis in gastric cancer through regulation of AKR1B1
Gastric cancer is a malignant tumor associated with a high mortality rate. Recently, emerging evidence has shown that ferroptosis, a regulated form of cell death induced by iron (Fe)-dependent lipid peroxidation. Nuclear factor E2 related factor 2 (NRF2) is a key regulator of intracellular oxidation homeostasis that plays a pivotal role in controlling lipid peroxidation, which is closely related to the process of ferroptosis. However, the molecular mechanism of NRF2 on ferroptosis remains to be investigated in gastric cancer. In our study, NRF 2 was found to transcriptionally activate Aldo-keto reductase 1 member B1 (AKR1B1) expression in gastric cancer. AKR1B1 is involved in the regulation of lipid metabolism by removing the aldehyde group of glutathione. We found that AKR1B1 is highly expressed in gastric cancer and is associated with a poor prognosis of the patients. In vitro experiments found that AKR1B1 has the ability to promote the proliferation and invasion of gastric cancer cells. AKR1B1 inhibited RSL3-induced ferroptosis in gastric cancer by reducing reactive oxygen species accumulation and lipid peroxidation, as well as decreasing intracellular ferrous ion and malondialdehyde expression and increasing glutathione expression. Our study demonstrated that AKR1B1 resisted RSL3-induced ferroptosis by regulating GPX4, PTGS2 and ACSL4, which was further demonstrated in a xenograft nude mouse model. Our work reveals a critical role for the AKR1B1 in the resistance to RSL3-induced ferroptosis in gastric cancer.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.