Camille Botcazon , Francisco Ramos-Martín , Nely Rodríguez-Moraga , Thomas Bergia , Sébastien Acket , Catherine Sarazin , Sonia Rippa
{"title":"鼠李糖脂和鼠李素与灰霉病菌和硬皮病菌的生物仿生脂膜模型的相互作用不同:脂质组学分析和生物物理研究。","authors":"Camille Botcazon , Francisco Ramos-Martín , Nely Rodríguez-Moraga , Thomas Bergia , Sébastien Acket , Catherine Sarazin , Sonia Rippa","doi":"10.1016/j.bpc.2024.107305","DOIUrl":null,"url":null,"abstract":"<div><p>Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on <em>Botrytis cinerea</em> and <em>Sclerotinia sclerotiorum</em>, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing <em>S. sclerotiorum,</em> and FGs are more efficient at permeabilizing <em>B. cinerea</em> mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of <em>B. cinerea</em> and <em>S. sclerotiorum</em>. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in <em>S. sclerotiorum</em>. The results were used to build biomimetic lipid membrane models of <em>B. cinerea</em> and <em>S. sclerotiorum</em> for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of <em>B. cinerea</em> than those of <em>S. sclerotiorum</em>, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"314 ","pages":"Article 107305"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies\",\"authors\":\"Camille Botcazon , Francisco Ramos-Martín , Nely Rodríguez-Moraga , Thomas Bergia , Sébastien Acket , Catherine Sarazin , Sonia Rippa\",\"doi\":\"10.1016/j.bpc.2024.107305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on <em>Botrytis cinerea</em> and <em>Sclerotinia sclerotiorum</em>, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing <em>S. sclerotiorum,</em> and FGs are more efficient at permeabilizing <em>B. cinerea</em> mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of <em>B. cinerea</em> and <em>S. sclerotiorum</em>. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in <em>S. sclerotiorum</em>. The results were used to build biomimetic lipid membrane models of <em>B. cinerea</em> and <em>S. sclerotiorum</em> for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of <em>B. cinerea</em> than those of <em>S. sclerotiorum</em>, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.</p></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"314 \",\"pages\":\"Article 107305\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224001340\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001340","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
鼠李糖脂(RLs)和芬吉霉素(FGs)是一种生物表面活性剂,具有很好的抗真菌性能,可减少农作物中合成杀虫剂的使用。它们都是两亲性分子,都以质膜为靶标。它们对灰霉病菌(Botrytis cinerea)和硬皮病菌(Sclerotinia sclerotiorum)这两种近缘硬皮病菌科植物致病真菌的作用各不相同。RLs 能更有效地渗透 S. sclerotiorum,而 FGs 能更有效地渗透 B. cinerea 菌丝细胞。为了研究脂膜成分与 RLs 和 FGs 活性之间的联系,我们分析了 B. cinerea 和 S. sclerotiorum 的脂质概况。我们确定这两种真菌中主要存在不饱和或饱和的 C18 脂肪酸和饱和的 C16 脂肪酸。我们还发现,磷脂酰乙醇胺(PE)、磷脂酸(PA)和磷脂酰胆碱(PC)是两种真菌中的主要磷脂(按此顺序排列),其中硬皮菌中的 PA 较多,PC 较少。研究结果被用于建立 B. cinerea 和 S. sclerotiorum 的生物仿真脂膜模型,以进行全原子分子动力学模拟和固态核磁共振实验,从而更深入地研究 RLs 或 FGs 与不同组成的脂双层之间的相互作用。两种化合物都产生了不同的作用。RLs 可完全插入所有研究的模型膜,并具有流化效应。FGs 往往会在双分子层外形成聚集体,并且比 S. sclerotiorum 更容易单独插入具有代表性的 B. cinerea 模型中,具有更高的流化效应。这些结果为了解近缘真菌的脂质组成及其对农业应用中非常有前景的膜抗真菌分子的作用模式的影响提供了新的视角。
Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies
Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing S. sclerotiorum, and FGs are more efficient at permeabilizing B. cinerea mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of B. cinerea and S. sclerotiorum. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in S. sclerotiorum. The results were used to build biomimetic lipid membrane models of B. cinerea and S. sclerotiorum for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of B. cinerea than those of S. sclerotiorum, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.