Mohammadjavad Berangi, Bernardo Mota Lontra, Kumar Anupam, Sandra Erkens, Dave Van Vliet, Almar Snippe, Mahesh Moenielal
{"title":"用梯度提升决策树研究路面管理的实验室和现场性能","authors":"Mohammadjavad Berangi, Bernardo Mota Lontra, Kumar Anupam, Sandra Erkens, Dave Van Vliet, Almar Snippe, Mahesh Moenielal","doi":"10.1111/mice.13322","DOIUrl":null,"url":null,"abstract":"Inconsistencies between performance data from laboratory‐prepared and field samples have been widely reported. These inconsistencies often result in inaccurate condition prediction, which leads to inefficient maintenance planning. Traditional pavement management systems (PMS) do not have the appropriate means (e.g., mechanistic solutions, extensive data handling facilities, etc.) to consider these data inconsistencies. With the growing demand for sustainable materials, there is a need for more self‐learning systems that could quickly transfer laboratory‐based information to field‐based information inside the PMS. The article aims to present a future‐ready machine learning‐based framework for analyzing the differences between laboratory and field‐prepared samples. Developed on the basis of data obtained from field and laboratory data, the gradient‐boosting decision trees‐based framework was able to establish a good relationship between laboratory performance and field performance (<jats:italic>R</jats:italic><jats:sup>2</jats:sup><jats:sub>test</jats:sub> > 80 for all models). At the same time, the framework could also show more complex relationships that are often not considered in practice.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"96 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient boosting decision trees to study laboratory and field performance in pavement management\",\"authors\":\"Mohammadjavad Berangi, Bernardo Mota Lontra, Kumar Anupam, Sandra Erkens, Dave Van Vliet, Almar Snippe, Mahesh Moenielal\",\"doi\":\"10.1111/mice.13322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inconsistencies between performance data from laboratory‐prepared and field samples have been widely reported. These inconsistencies often result in inaccurate condition prediction, which leads to inefficient maintenance planning. Traditional pavement management systems (PMS) do not have the appropriate means (e.g., mechanistic solutions, extensive data handling facilities, etc.) to consider these data inconsistencies. With the growing demand for sustainable materials, there is a need for more self‐learning systems that could quickly transfer laboratory‐based information to field‐based information inside the PMS. The article aims to present a future‐ready machine learning‐based framework for analyzing the differences between laboratory and field‐prepared samples. Developed on the basis of data obtained from field and laboratory data, the gradient‐boosting decision trees‐based framework was able to establish a good relationship between laboratory performance and field performance (<jats:italic>R</jats:italic><jats:sup>2</jats:sup><jats:sub>test</jats:sub> > 80 for all models). At the same time, the framework could also show more complex relationships that are often not considered in practice.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13322\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13322","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Gradient boosting decision trees to study laboratory and field performance in pavement management
Inconsistencies between performance data from laboratory‐prepared and field samples have been widely reported. These inconsistencies often result in inaccurate condition prediction, which leads to inefficient maintenance planning. Traditional pavement management systems (PMS) do not have the appropriate means (e.g., mechanistic solutions, extensive data handling facilities, etc.) to consider these data inconsistencies. With the growing demand for sustainable materials, there is a need for more self‐learning systems that could quickly transfer laboratory‐based information to field‐based information inside the PMS. The article aims to present a future‐ready machine learning‐based framework for analyzing the differences between laboratory and field‐prepared samples. Developed on the basis of data obtained from field and laboratory data, the gradient‐boosting decision trees‐based framework was able to establish a good relationship between laboratory performance and field performance (R2test > 80 for all models). At the same time, the framework could also show more complex relationships that are often not considered in practice.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.