{"title":"基于深度学习潜能的银硅合金液态热物理特性","authors":"","doi":"10.1016/j.commatsci.2024.113293","DOIUrl":null,"url":null,"abstract":"<div><p>The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with <em>ab initio</em> molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid thermophysical properties of Ag-Si alloy based on deep learning potential\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with <em>ab initio</em> molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005147\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Liquid thermophysical properties of Ag-Si alloy based on deep learning potential
The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with ab initio molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.