基于深度学习潜能的银硅合金液态热物理特性

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"基于深度学习潜能的银硅合金液态热物理特性","authors":"","doi":"10.1016/j.commatsci.2024.113293","DOIUrl":null,"url":null,"abstract":"<div><p>The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with <em>ab initio</em> molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid thermophysical properties of Ag-Si alloy based on deep learning potential\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with <em>ab initio</em> molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005147\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解液态金属和合金的热物理性质对于扩展材料数据库和设计具有良好性能的材料至关重要。在这项工作中,我们利用深度神经网络(DNN)算法为液态银硅合金开发了一种原子间势。与ab initio分子动力学(AIMD)结果相比,DNN势能很好地描述了模拟温度范围内体系的能量、力和结构特征信息。通过该势垒,我们可以用模拟的方法得到不同成分液态合金的热物理性质。计算得出的热物理性质与实验数据非常吻合。对局部结构的分析表明,液体有序性和稳定性在原子级冷却时得到加强,最终导致热物理性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Liquid thermophysical properties of Ag-Si alloy based on deep learning potential

Liquid thermophysical properties of Ag-Si alloy based on deep learning potential

The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with ab initio molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信