具有饱和发病率、疫苗接种和消除策略的 SIQR 流行病分区模型的稳定性分析

Q3 Mathematics
Monika Badole , Ramakant Bhardwaj , Rohini Joshi , Pulak Konar
{"title":"具有饱和发病率、疫苗接种和消除策略的 SIQR 流行病分区模型的稳定性分析","authors":"Monika Badole ,&nbsp;Ramakant Bhardwaj ,&nbsp;Rohini Joshi ,&nbsp;Pulak Konar","doi":"10.1016/j.rico.2024.100459","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we developed and analyzed a compartmental epidemic model and a system model that incorporate vaccination, elimination, and quarantine techniques, with a saturated incidence rate, by theoretical and numerical means. The model is described by a system of four nonlinear differential equations. Our analysis included determining the reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and examining equilibrium solutions. The outcomes of the disease are identified through the threshold <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. When <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the disease-free equilibrium is globally asymptotically stable, as proved by the LaSalle invariance principle and disease extinction analysis. However, using the Routh–Hurwitz criterion, we have proved that the disease-free equilibrium is not stable, and when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the unique endemic equilibrium is asymptotically stable locally. The stability of the endemic and disease-free equilibria globally has been examined using the Routh–Hurwitz and Dulac criteria. Subsequently, numerical simulations were utilized to illustrate the theoretical findings effectively.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"16 ","pages":"Article 100459"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000894/pdfft?md5=be77ca5675314821c1d946491b564e65&pid=1-s2.0-S2666720724000894-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of a SIQR epidemic compartmental model with saturated incidence rate, vaccination and elimination strategies\",\"authors\":\"Monika Badole ,&nbsp;Ramakant Bhardwaj ,&nbsp;Rohini Joshi ,&nbsp;Pulak Konar\",\"doi\":\"10.1016/j.rico.2024.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we developed and analyzed a compartmental epidemic model and a system model that incorporate vaccination, elimination, and quarantine techniques, with a saturated incidence rate, by theoretical and numerical means. The model is described by a system of four nonlinear differential equations. Our analysis included determining the reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and examining equilibrium solutions. The outcomes of the disease are identified through the threshold <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. When <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the disease-free equilibrium is globally asymptotically stable, as proved by the LaSalle invariance principle and disease extinction analysis. However, using the Routh–Hurwitz criterion, we have proved that the disease-free equilibrium is not stable, and when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the unique endemic equilibrium is asymptotically stable locally. The stability of the endemic and disease-free equilibria globally has been examined using the Routh–Hurwitz and Dulac criteria. Subsequently, numerical simulations were utilized to illustrate the theoretical findings effectively.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"16 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000894/pdfft?md5=be77ca5675314821c1d946491b564e65&pid=1-s2.0-S2666720724000894-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过理论和数值方法,建立并分析了一个包含疫苗接种、消除和检疫技术的分区流行病模型和一个系统模型,该模型具有饱和发病率。该模型由四个非线性微分方程系统描述。我们的分析包括确定繁殖数 Rq 和研究平衡解。疾病的结果通过阈值 Rq 确定。当 Rq<1 时,无疾病平衡是全局渐近稳定的,这已被拉萨尔不变性原理和疾病灭绝分析所证明。然而,利用 Routh-Hurwitz 准则,我们证明了无病均衡并不稳定,而当 Rq>1 时,唯一的地方病均衡在局部是渐近稳定的。利用 Routh-Hurwitz 准则和 Dulac 准则检验了地方性均衡和无病均衡的全局稳定性。随后,利用数值模拟有效地说明了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of a SIQR epidemic compartmental model with saturated incidence rate, vaccination and elimination strategies

In this study, we developed and analyzed a compartmental epidemic model and a system model that incorporate vaccination, elimination, and quarantine techniques, with a saturated incidence rate, by theoretical and numerical means. The model is described by a system of four nonlinear differential equations. Our analysis included determining the reproduction number Rq and examining equilibrium solutions. The outcomes of the disease are identified through the threshold Rq. When Rq<1, the disease-free equilibrium is globally asymptotically stable, as proved by the LaSalle invariance principle and disease extinction analysis. However, using the Routh–Hurwitz criterion, we have proved that the disease-free equilibrium is not stable, and when Rq>1, the unique endemic equilibrium is asymptotically stable locally. The stability of the endemic and disease-free equilibria globally has been examined using the Routh–Hurwitz and Dulac criteria. Subsequently, numerical simulations were utilized to illustrate the theoretical findings effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信