{"title":"e-SAFE:雾增强型物联网中一种安全高效的访问控制方案,具有属性聚合和用户撤销功能,可用于电子健康领域","authors":"Richa Sarma , Sanjay Moulik","doi":"10.1016/j.jisa.2024.103859","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of IoT led to a surge in connected devices and data production in the medical field. Therefore, to meet the rising demand for modern healthcare services, Fog and Cloud services come as a rescue for IoT-based equipment. As data travels through several levels, providing security to such data is challenging. The CP-ABE cryptographic approach allows for efficient access control. However, none of the known cryptographic CP-ABE approaches that provide granular access control offers the following features: <em>attribute convergence</em>, <em>privileged access</em>, <em>user revocation</em>, and <em>outsourcing capabilities</em> altogether. Thus, we present <em>e-SAFE</em>, a CP-ABE approach which addresses all these issues. In addition, in <em>e-SAFE</em>, the data users with resource-constrained medical gadgets must save just a constant and small-size decryption key on their gadgets. According to our assessment of security and performance, <em>e-SAFE</em> is found to be a secure and efficient access control technique for IoT gadgets.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"85 ","pages":"Article 103859"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"e-SAFE: A secure and efficient access control scheme with attribute convergence and user revocation in fog enhanced IoT for E-Health\",\"authors\":\"Richa Sarma , Sanjay Moulik\",\"doi\":\"10.1016/j.jisa.2024.103859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growth of IoT led to a surge in connected devices and data production in the medical field. Therefore, to meet the rising demand for modern healthcare services, Fog and Cloud services come as a rescue for IoT-based equipment. As data travels through several levels, providing security to such data is challenging. The CP-ABE cryptographic approach allows for efficient access control. However, none of the known cryptographic CP-ABE approaches that provide granular access control offers the following features: <em>attribute convergence</em>, <em>privileged access</em>, <em>user revocation</em>, and <em>outsourcing capabilities</em> altogether. Thus, we present <em>e-SAFE</em>, a CP-ABE approach which addresses all these issues. In addition, in <em>e-SAFE</em>, the data users with resource-constrained medical gadgets must save just a constant and small-size decryption key on their gadgets. According to our assessment of security and performance, <em>e-SAFE</em> is found to be a secure and efficient access control technique for IoT gadgets.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"85 \",\"pages\":\"Article 103859\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001613\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001613","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
e-SAFE: A secure and efficient access control scheme with attribute convergence and user revocation in fog enhanced IoT for E-Health
The growth of IoT led to a surge in connected devices and data production in the medical field. Therefore, to meet the rising demand for modern healthcare services, Fog and Cloud services come as a rescue for IoT-based equipment. As data travels through several levels, providing security to such data is challenging. The CP-ABE cryptographic approach allows for efficient access control. However, none of the known cryptographic CP-ABE approaches that provide granular access control offers the following features: attribute convergence, privileged access, user revocation, and outsourcing capabilities altogether. Thus, we present e-SAFE, a CP-ABE approach which addresses all these issues. In addition, in e-SAFE, the data users with resource-constrained medical gadgets must save just a constant and small-size decryption key on their gadgets. According to our assessment of security and performance, e-SAFE is found to be a secure and efficient access control technique for IoT gadgets.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.