Linxuan He, Yunhui Xu, Weihua He, Yihan Lin, Yang Tian, Yujie Wu, Wenhui Wang, Ziyang Zhang, Junwei Han, Yonghong Tian, Bo Xu, Guoqi Li
{"title":"具有内部复杂性的网络模型是人工智能和神经科学的桥梁。","authors":"Linxuan He, Yunhui Xu, Weihua He, Yihan Lin, Yang Tian, Yujie Wu, Wenhui Wang, Ziyang Zhang, Junwei Han, Yonghong Tian, Bo Xu, Guoqi Li","doi":"10.1038/s43588-024-00674-9","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) researchers currently believe that the main approach to building more general model problems is the big AI model, where existing neural networks are becoming deeper, larger and wider. We term this the big model with external complexity approach. In this work we argue that there is another approach called small model with internal complexity, which can be used to find a suitable path of incorporating rich properties into neurons to construct larger and more efficient AI models. We uncover that one has to increase the scale of the network externally to stimulate the same dynamical properties. To illustrate this, we build a Hodgkin–Huxley (HH) network with rich internal complexity, where each neuron is an HH model, and prove that the dynamical properties and performance of the HH network can be equivalent to a bigger leaky integrate-and-fire (LIF) network, where each neuron is a LIF neuron with simple internal complexity. This study shows that by enhancing internal complexity of neurons in a Hodgkin–Huxley network, similar performance to larger, simpler networks can be achieved, suggesting an alternative path for powerful AI systems by focusing on neuron complexity.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"584-599"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network model with internal complexity bridges artificial intelligence and neuroscience\",\"authors\":\"Linxuan He, Yunhui Xu, Weihua He, Yihan Lin, Yang Tian, Yujie Wu, Wenhui Wang, Ziyang Zhang, Junwei Han, Yonghong Tian, Bo Xu, Guoqi Li\",\"doi\":\"10.1038/s43588-024-00674-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) researchers currently believe that the main approach to building more general model problems is the big AI model, where existing neural networks are becoming deeper, larger and wider. We term this the big model with external complexity approach. In this work we argue that there is another approach called small model with internal complexity, which can be used to find a suitable path of incorporating rich properties into neurons to construct larger and more efficient AI models. We uncover that one has to increase the scale of the network externally to stimulate the same dynamical properties. To illustrate this, we build a Hodgkin–Huxley (HH) network with rich internal complexity, where each neuron is an HH model, and prove that the dynamical properties and performance of the HH network can be equivalent to a bigger leaky integrate-and-fire (LIF) network, where each neuron is a LIF neuron with simple internal complexity. This study shows that by enhancing internal complexity of neurons in a Hodgkin–Huxley network, similar performance to larger, simpler networks can be achieved, suggesting an alternative path for powerful AI systems by focusing on neuron complexity.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 8\",\"pages\":\"584-599\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00674-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00674-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Network model with internal complexity bridges artificial intelligence and neuroscience
Artificial intelligence (AI) researchers currently believe that the main approach to building more general model problems is the big AI model, where existing neural networks are becoming deeper, larger and wider. We term this the big model with external complexity approach. In this work we argue that there is another approach called small model with internal complexity, which can be used to find a suitable path of incorporating rich properties into neurons to construct larger and more efficient AI models. We uncover that one has to increase the scale of the network externally to stimulate the same dynamical properties. To illustrate this, we build a Hodgkin–Huxley (HH) network with rich internal complexity, where each neuron is an HH model, and prove that the dynamical properties and performance of the HH network can be equivalent to a bigger leaky integrate-and-fire (LIF) network, where each neuron is a LIF neuron with simple internal complexity. This study shows that by enhancing internal complexity of neurons in a Hodgkin–Huxley network, similar performance to larger, simpler networks can be achieved, suggesting an alternative path for powerful AI systems by focusing on neuron complexity.