评估造血细胞移植中 HLA-DQ 异源二聚体变异的工具:HLA-DQ 异源二聚体工具。

IF 3.6 3区 医学 Q2 HEMATOLOGY
Ray W. Sajulga Jr. , Yung-Tsi Bolon , Martin J. Maiers , Effie W. Petersdorf
{"title":"评估造血细胞移植中 HLA-DQ 异源二聚体变异的工具:HLA-DQ 异源二聚体工具。","authors":"Ray W. Sajulga Jr. ,&nbsp;Yung-Tsi Bolon ,&nbsp;Martin J. Maiers ,&nbsp;Effie W. Petersdorf","doi":"10.1016/j.jtct.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with &gt;99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.</div></div>","PeriodicalId":23283,"journal":{"name":"Transplantation and Cellular Therapy","volume":"30 11","pages":"Pages 1084.e1-1084.e15"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation\",\"authors\":\"Ray W. Sajulga Jr. ,&nbsp;Yung-Tsi Bolon ,&nbsp;Martin J. Maiers ,&nbsp;Effie W. Petersdorf\",\"doi\":\"10.1016/j.jtct.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with &gt;99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.</div></div>\",\"PeriodicalId\":23283,\"journal\":{\"name\":\"Transplantation and Cellular Therapy\",\"volume\":\"30 11\",\"pages\":\"Pages 1084.e1-1084.e15\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transplantation and Cellular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666636724005864\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation and Cellular Therapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666636724005864","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在优化移植时,临床决策者会考虑患者和供体之间的 HLA-A、-B、-C、-DRB1(8 个等位基因中有 8 个匹配),有时也会考虑 HLA-DQB1 (10 个等位基因中有 10 个匹配)。HLA-DQ 是由 HLA-DQB1 的 β 链产物和 HLA-DQA1 的 α 链产物组成的异源二聚体。除了由父母遗传的顺式单倍型确定的分子外,某些等位基因之间也可能发生α-β反式二聚化,从而产生独特的分子和潜在的不匹配分子。最近,研究人员发现,HLA-DQB1 不匹配的非亲缘供体 HCT 后的临床结果取决于 HLA-DQ 分子错配的总数和特定的 α-β 异源二聚体错配:本研究的目的是开发一种自动工具,用于分析 HLA-DQ 异源二聚体数据,并通过大量数据集和分析进行验证。通过这样做,我们为移植领域提供了一种用于 DQα-DQβ 反式异源二聚体评估、HLA-DQ 估算和 HLA-DQ 特征源选择的 HLA-DQ 异源二聚体工具:在我们的研究中,我们利用了 352,148 个高置信度、统计分期(通过改进的期望最大化算法)的 HLA-DRB1∼DQA1∼DQB1 单倍型,1,052 个血统分期的 HLA-DQA1∼DQB1 单倍型,以及 13,663 例历史移植来描述 HLA-DQ 异源二聚体数据:利用我们开发的QLASSy(HLA-DQA1和HLA-DQB1异二聚体评估)工具,我们首先评估了数据中HLA-DQ异二聚体的数据质量,包括反式二聚体、HLA-DQA1分型缺失以及意外的HLA-DQA1和HLA-DQB1组合。由于反式二聚体能在个体中产生多达四种独特的 HLA-DQ 分子,我们为 176,074 名美国供体产生的 275 个独特反式二聚体中 99.7% 的 HLA-DQA1 和 HLA-DQB1 数据提供了校内验证。许多个体缺乏 HLA-DQA1 分型,因此我们开发并验证了通过 HLA-DRB1 进行的高可信度 HLA-DQ 注释归约,在 23,698 个个体中预测的正确率大于 99%。少数个体显示了意外的 HLA-DQ 组合。我们根据供体的 HLA-DQA1 和 HLA-DQB1 分型,重新对 61 例具有意外 HLA-DQ 组合的供体进行了分型,并通过数据审查或重新分型纠正了 61 例供体中的 22 例(36%),并使用归因法解决了意外组合的问题。在验证了数据集的数据质量后,我们对数据集进行了进一步分析:我们探究了观察到的 HLA-DQ 组合的频率,以比较不同人群的 HLA-DQ(例如,我们在亚洲/太平洋岛民和黑人/非洲裔美国人中发现了更多的高风险分子),证明了 HLA-DQA1 和 HLA-DQB1 错配对 HLA-DQ 分子错配的影响,并强调了在利用这些新的 HLA-DQ 信息搜索历史移植时,可以改进供体选择的地方(其中 51.结论:我们将研究结果汇总到一个工具中,该工具可根据需要计算缺失的 HLA-DQA1,注释 HLA-DQ(错误)匹配,并强调当前和未来需要考虑的其他重要 HLA-DQ 数据。总之,这些有价值的数据集、分析和最终工具都是可操作的资源,可用于加强供体选择和改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation

A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation
When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with >99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
15.60%
发文量
1061
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信