"NO "争议:在糖尿病脑病的胰岛素信号传导中的争议性作用。

IF 3.8 3区 医学 Q2 CELL BIOLOGY
Xi Chen , Ying Song , Ye Hong , Xiaomin Zhang , Qisong Li , Hongling Zhou
{"title":"\"NO \"争议:在糖尿病脑病的胰岛素信号传导中的争议性作用。","authors":"Xi Chen ,&nbsp;Ying Song ,&nbsp;Ye Hong ,&nbsp;Xiaomin Zhang ,&nbsp;Qisong Li ,&nbsp;Hongling Zhou","doi":"10.1016/j.mce.2024.112346","DOIUrl":null,"url":null,"abstract":"<div><p>Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"593 ","pages":"Article 112346"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“NO” controversy?: A controversial role in insulin signaling of diabetic encephalopathy\",\"authors\":\"Xi Chen ,&nbsp;Ying Song ,&nbsp;Ye Hong ,&nbsp;Xiaomin Zhang ,&nbsp;Qisong Li ,&nbsp;Hongling Zhou\",\"doi\":\"10.1016/j.mce.2024.112346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.</p></div>\",\"PeriodicalId\":18707,\"journal\":{\"name\":\"Molecular and Cellular Endocrinology\",\"volume\":\"593 \",\"pages\":\"Article 112346\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303720724002028\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720724002028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰岛素是人体内的一种重要激素,它通过与胰岛素受体结合并调节各种细胞过程来发挥其作用。而一氧化氮(NO)在胰岛素分泌过程中发挥着重要作用,是上游分子和下游效应物之间信号转导途径的介质,在胰岛素下游信号网络中占有重要地位。研究表明,胰岛素-NO 系统在中枢神经系统中表现出双重调控作用,在糖尿病脑病(DE)的调控中至关重要。了解这一系统对于理解现有药物的靶点和开发潜在的治疗干预措施具有巨大的现实意义。这篇综述广泛研究了胰岛素、NO、一氧化氮合酶(NOS)、特定 NO 通路的特征、它们之间的相互联系以及它们在糖尿病脑病中的调控作用机制,为糖尿病脑病的新治疗靶点提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“NO” controversy?: A controversial role in insulin signaling of diabetic encephalopathy

“NO” controversy?: A controversial role in insulin signaling of diabetic encephalopathy

Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Endocrinology
Molecular and Cellular Endocrinology 医学-内分泌学与代谢
CiteScore
9.00
自引率
2.40%
发文量
174
审稿时长
42 days
期刊介绍: Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信