{"title":"过去、现在和未来:图像分析在小分子药物开发中的应用。","authors":"","doi":"10.1016/j.xphs.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>The often-perceived limitations of image analysis have for many years impeded the widespread application of such systems as first line characterisation tools. Image analysis has, however, undergone a notable resurgence in the pharmaceutical industry fuelled by developments system capabilities and the desire of scientists to characterize the morphological nature of their particles more adequately. The importance of particle shape as well as size is now widely acknowledged.</div><div>With the increasing use of modelling and simulations, and ongoing developments though the integration of machine learning and artificial intelligence, the utility of image analysis is increasing significantly driven by the richness of the data obtained. Such datasets provide means to circumvent the requirement to rely on less informative descriptors and enable the move towards the use of whole distributions. Combining the improved particle size and shape measurement and description with advances in modelling and simulations is enabling improved means to elucidate the link between particle and bulk powder properties.</div><div>In addition to improved capabilities to describe input materials, approaches to characterize single components within multicomponent systems are providing scientists means to understand how their material may change during manufacture thus providing a means to link the behaviour of final dosage forms with the particle properties at the point of action.</div><div>The aim is to provide an overview of image analysis and update readers with innovations and capabilities to other methods in the small molecule arena. We will also describe the use of AI for the improved analysis using image analysis.</div></div>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Past, Current, and Future: Application of Image Analysis in Small Molecule Pharmaceutical Development\",\"authors\":\"\",\"doi\":\"10.1016/j.xphs.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The often-perceived limitations of image analysis have for many years impeded the widespread application of such systems as first line characterisation tools. Image analysis has, however, undergone a notable resurgence in the pharmaceutical industry fuelled by developments system capabilities and the desire of scientists to characterize the morphological nature of their particles more adequately. The importance of particle shape as well as size is now widely acknowledged.</div><div>With the increasing use of modelling and simulations, and ongoing developments though the integration of machine learning and artificial intelligence, the utility of image analysis is increasing significantly driven by the richness of the data obtained. Such datasets provide means to circumvent the requirement to rely on less informative descriptors and enable the move towards the use of whole distributions. Combining the improved particle size and shape measurement and description with advances in modelling and simulations is enabling improved means to elucidate the link between particle and bulk powder properties.</div><div>In addition to improved capabilities to describe input materials, approaches to characterize single components within multicomponent systems are providing scientists means to understand how their material may change during manufacture thus providing a means to link the behaviour of final dosage forms with the particle properties at the point of action.</div><div>The aim is to provide an overview of image analysis and update readers with innovations and capabilities to other methods in the small molecule arena. We will also describe the use of AI for the improved analysis using image analysis.</div></div>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002235492400306X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002235492400306X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Past, Current, and Future: Application of Image Analysis in Small Molecule Pharmaceutical Development
The often-perceived limitations of image analysis have for many years impeded the widespread application of such systems as first line characterisation tools. Image analysis has, however, undergone a notable resurgence in the pharmaceutical industry fuelled by developments system capabilities and the desire of scientists to characterize the morphological nature of their particles more adequately. The importance of particle shape as well as size is now widely acknowledged.
With the increasing use of modelling and simulations, and ongoing developments though the integration of machine learning and artificial intelligence, the utility of image analysis is increasing significantly driven by the richness of the data obtained. Such datasets provide means to circumvent the requirement to rely on less informative descriptors and enable the move towards the use of whole distributions. Combining the improved particle size and shape measurement and description with advances in modelling and simulations is enabling improved means to elucidate the link between particle and bulk powder properties.
In addition to improved capabilities to describe input materials, approaches to characterize single components within multicomponent systems are providing scientists means to understand how their material may change during manufacture thus providing a means to link the behaviour of final dosage forms with the particle properties at the point of action.
The aim is to provide an overview of image analysis and update readers with innovations and capabilities to other methods in the small molecule arena. We will also describe the use of AI for the improved analysis using image analysis.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.