高通量筛选,识别并优化用于细胞疗法的 NOT 门受体。

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
S. Martire, X. Wang, M. McElvain, V. Suryawanshi, T. Gill, B. DiAndreth, W. Lee, T. P. Riley, H. Xu, C. Netirojjanakul, A. Kamb
{"title":"高通量筛选,识别并优化用于细胞疗法的 NOT 门受体。","authors":"S. Martire,&nbsp;X. Wang,&nbsp;M. McElvain,&nbsp;V. Suryawanshi,&nbsp;T. Gill,&nbsp;B. DiAndreth,&nbsp;W. Lee,&nbsp;T. P. Riley,&nbsp;H. Xu,&nbsp;C. Netirojjanakul,&nbsp;A. Kamb","doi":"10.1002/cyto.a.24893","DOIUrl":null,"url":null,"abstract":"<p>Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24893","citationCount":"0","resultStr":"{\"title\":\"High-throughput screen to identify and optimize NOT gate receptors for cell therapy\",\"authors\":\"S. Martire,&nbsp;X. Wang,&nbsp;M. McElvain,&nbsp;V. Suryawanshi,&nbsp;T. Gill,&nbsp;B. DiAndreth,&nbsp;W. Lee,&nbsp;T. P. Riley,&nbsp;H. Xu,&nbsp;C. Netirojjanakul,&nbsp;A. Kamb\",\"doi\":\"10.1002/cyto.a.24893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24893\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24893","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

逻辑门控工程细胞是一种新兴的治疗模式,可利用分子特征将医疗干预集中于体内的特定组织。然而,这些工程系统复杂性的增加可能会给预测和优化其行为带来挑战。在此,我们介绍了基于流式细胞仪的筛选系统的设计和测试,该系统可从候选构建体的集合库中快速筛选出功能性抑制受体。在概念验证实验中,这种方法识别出了与激活受体配对后可作为 NOT 门操作的抑制性受体。该方法可用于生成大型数据集,以训练机器学习模型,从而更好地预测和优化逻辑门控细胞疗法的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-throughput screen to identify and optimize NOT gate receptors for cell therapy

High-throughput screen to identify and optimize NOT gate receptors for cell therapy

Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信