{"title":"使用各种出口边界条件对理想化左冠状动脉模型血液动力学的数值评估。","authors":"Asif Equbal, Paragmoni Kalita","doi":"10.1088/2057-1976/ad7030","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical assessment of using various outlet boundary conditions on the hemodynamics of an idealized left coronary artery model.\",\"authors\":\"Asif Equbal, Paragmoni Kalita\",\"doi\":\"10.1088/2057-1976/ad7030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad7030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad7030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Numerical assessment of using various outlet boundary conditions on the hemodynamics of an idealized left coronary artery model.
Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.