使用各种出口边界条件对理想化左冠状动脉模型血液动力学的数值评估。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Asif Equbal, Paragmoni Kalita
{"title":"使用各种出口边界条件对理想化左冠状动脉模型血液动力学的数值评估。","authors":"Asif Equbal, Paragmoni Kalita","doi":"10.1088/2057-1976/ad7030","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical assessment of using various outlet boundary conditions on the hemodynamics of an idealized left coronary artery model.\",\"authors\":\"Asif Equbal, Paragmoni Kalita\",\"doi\":\"10.1088/2057-1976/ad7030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad7030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad7030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

血管疾病在很大程度上受血液动力学参数的影响,而确定这些参数的准确性取决于使用正确的边界条件。本研究进行了双向流固耦合(FSI)模拟,以研究出口压力边界条件对通过左冠状动脉分叉处左前降支(LAD)中度狭窄(50%)的血液动力学的影响。采用 Carreau 粘度模型来描述血液的剪切稀化行为。研究结果表明,与人体健康和搏动压力出口条件相比,出口边界采用零压力会明显高估血流动力学变量的值,如壁剪切应力(WSS)和时间平均壁剪切应力(TAWSS)。不过,这些变量之间的差异在人体健康和搏动压力出口条件下略低。振荡剪切指数(OSI)在所有情况下都保持不变,这表明与出口边界条件无关。此外,在零压力出口边界条件下,负轴向速度的大小和穿过斑块的压降都较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical assessment of using various outlet boundary conditions on the hemodynamics of an idealized left coronary artery model.

Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信