人类怀孕头三个月胎盘中的 DNA 甲基化和基因表达模式的性别双态性。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Tania L Gonzalez, Bryn E Willson, Erica T Wang, Kent D Taylor, Allynson Novoa, Akhila Swarna, Juanita C Ortiz, Gianna J Zeno, Caroline A Jefferies, Kate Lawrenson, Jerome I Rotter, Yii-Der Ida Chen, John Williams, Jinrui Cui, Mark O Goodarzi, Margareta D Pisarska
{"title":"人类怀孕头三个月胎盘中的 DNA 甲基化和基因表达模式的性别双态性。","authors":"Tania L Gonzalez, Bryn E Willson, Erica T Wang, Kent D Taylor, Allynson Novoa, Akhila Swarna, Juanita C Ortiz, Gianna J Zeno, Caroline A Jefferies, Kate Lawrenson, Jerome I Rotter, Yii-Der Ida Chen, John Williams, Jinrui Cui, Mark O Goodarzi, Margareta D Pisarska","doi":"10.1186/s13293-024-00629-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fetal sex and placental development impact pregnancy outcomes and fetal-maternal health, but the critical timepoint of placenta establishment in first trimester is understudied in human pregnancies.</p><p><strong>Methods: </strong>Pregnant subjects were recruited in late first trimester (weeks 10-14) at time of chorionic villus sampling, a prenatal diagnostic test. Leftover placenta tissue was collected and stored until birth outcomes were known, then DNA and RNA were isolated from singleton, normal karyotype pregnancies resulting in live births. DNA methylation was measured with the Illumina Infinium MethylationEPIC BeadChip array (n = 56). Differential methylation analysis compared 25 females versus 31 males using a generalized linear model on 743,461 autosomal probes. Gene expression sex differences were analyzed with RNA-sequencing (n = 74). An integrated analysis was performed using linear regression to correlate gene expression and DNA methylation in 51 overlapping placentas.</p><p><strong>Results: </strong>Methylation analysis identified 151 differentially methylated probes (DMPs) significant at false discovery rate < 0.05, including 89 (59%) hypermethylated in females. Probe cg17612569 (GABPA, ATP5J) was the most significant CpG site, hypermethylated in males. There were 11 differentially methylated regions affected by fetal sex, with transcription factors ZNF300 and ZNF311 most significantly hypermethylated in males and females, respectively. RNA-sequencing identified 152 genes significantly sexually dimorphic at false discovery rate < 0.05. The 151 DMPs were associated with 18 genes with gene downregulation (P < 0.05) in the direction of hypermethylation, including 2 genes significant at false discovery rate < 0.05 (ZNF300 and CUB and Sushi multiple domains 1, CSMD1). Both genes, as well as Family With Sequence Similarity 228 Member A (FAM228A), showed significant correlation between DNA methylation and sexually dimorphic gene expression, though FAM228A DNA methylation was less sexually dimorphic. Comparison with other sex differences studies found that cg17612569 is male-hypermethylated across gestation in placenta and in human blood up to adulthood.</p><p><strong>Conclusions: </strong>Overall, sex dimorphic differential methylation with associated differential gene expression in the first trimester placenta is small, but there remain significant genes that may be regulated through methylation leading to differences in the first trimester placenta.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sexually dimorphic DNA methylation and gene expression patterns in human first trimester placenta.\",\"authors\":\"Tania L Gonzalez, Bryn E Willson, Erica T Wang, Kent D Taylor, Allynson Novoa, Akhila Swarna, Juanita C Ortiz, Gianna J Zeno, Caroline A Jefferies, Kate Lawrenson, Jerome I Rotter, Yii-Der Ida Chen, John Williams, Jinrui Cui, Mark O Goodarzi, Margareta D Pisarska\",\"doi\":\"10.1186/s13293-024-00629-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fetal sex and placental development impact pregnancy outcomes and fetal-maternal health, but the critical timepoint of placenta establishment in first trimester is understudied in human pregnancies.</p><p><strong>Methods: </strong>Pregnant subjects were recruited in late first trimester (weeks 10-14) at time of chorionic villus sampling, a prenatal diagnostic test. Leftover placenta tissue was collected and stored until birth outcomes were known, then DNA and RNA were isolated from singleton, normal karyotype pregnancies resulting in live births. DNA methylation was measured with the Illumina Infinium MethylationEPIC BeadChip array (n = 56). Differential methylation analysis compared 25 females versus 31 males using a generalized linear model on 743,461 autosomal probes. Gene expression sex differences were analyzed with RNA-sequencing (n = 74). An integrated analysis was performed using linear regression to correlate gene expression and DNA methylation in 51 overlapping placentas.</p><p><strong>Results: </strong>Methylation analysis identified 151 differentially methylated probes (DMPs) significant at false discovery rate < 0.05, including 89 (59%) hypermethylated in females. Probe cg17612569 (GABPA, ATP5J) was the most significant CpG site, hypermethylated in males. There were 11 differentially methylated regions affected by fetal sex, with transcription factors ZNF300 and ZNF311 most significantly hypermethylated in males and females, respectively. RNA-sequencing identified 152 genes significantly sexually dimorphic at false discovery rate < 0.05. The 151 DMPs were associated with 18 genes with gene downregulation (P < 0.05) in the direction of hypermethylation, including 2 genes significant at false discovery rate < 0.05 (ZNF300 and CUB and Sushi multiple domains 1, CSMD1). Both genes, as well as Family With Sequence Similarity 228 Member A (FAM228A), showed significant correlation between DNA methylation and sexually dimorphic gene expression, though FAM228A DNA methylation was less sexually dimorphic. Comparison with other sex differences studies found that cg17612569 is male-hypermethylated across gestation in placenta and in human blood up to adulthood.</p><p><strong>Conclusions: </strong>Overall, sex dimorphic differential methylation with associated differential gene expression in the first trimester placenta is small, but there remain significant genes that may be regulated through methylation leading to differences in the first trimester placenta.</p>\",\"PeriodicalId\":8890,\"journal\":{\"name\":\"Biology of Sex Differences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Sex Differences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13293-024-00629-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-024-00629-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:胎儿性别和胎盘发育影响妊娠结局和胎儿-母亲健康,但在人类妊娠中,胎盘在妊娠头三个月形成的关键时间点研究不足:方法: 在产前诊断检查--绒毛取样--的前三个月晚期(第 10-14 周)招募孕妇。收集并储存剩余的胎盘组织,直到知道分娩结果,然后从活产的单胎正常核型孕妇中分离 DNA 和 RNA。使用 Illumina Infinium MethylationEPIC BeadChip 阵列测量 DNA 甲基化(n = 56)。使用广义线性模型对 743,461 个常染色体探针进行甲基化差异分析,比较了 25 名女性和 31 名男性的差异。基因表达性别差异通过 RNA 测序进行分析(n = 74)。利用线性回归对 51 个重叠胎盘的基因表达和 DNA 甲基化进行了综合分析:结果:甲基化分析确定了 151 个差异甲基化探针(DMPs),假发现率显著:总体而言,妊娠头三个月胎盘中与相关基因表达差异有关的性别二态差异甲基化较小,但仍有大量基因可能通过甲基化调控而导致妊娠头三个月胎盘的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sexually dimorphic DNA methylation and gene expression patterns in human first trimester placenta.

Background: Fetal sex and placental development impact pregnancy outcomes and fetal-maternal health, but the critical timepoint of placenta establishment in first trimester is understudied in human pregnancies.

Methods: Pregnant subjects were recruited in late first trimester (weeks 10-14) at time of chorionic villus sampling, a prenatal diagnostic test. Leftover placenta tissue was collected and stored until birth outcomes were known, then DNA and RNA were isolated from singleton, normal karyotype pregnancies resulting in live births. DNA methylation was measured with the Illumina Infinium MethylationEPIC BeadChip array (n = 56). Differential methylation analysis compared 25 females versus 31 males using a generalized linear model on 743,461 autosomal probes. Gene expression sex differences were analyzed with RNA-sequencing (n = 74). An integrated analysis was performed using linear regression to correlate gene expression and DNA methylation in 51 overlapping placentas.

Results: Methylation analysis identified 151 differentially methylated probes (DMPs) significant at false discovery rate < 0.05, including 89 (59%) hypermethylated in females. Probe cg17612569 (GABPA, ATP5J) was the most significant CpG site, hypermethylated in males. There were 11 differentially methylated regions affected by fetal sex, with transcription factors ZNF300 and ZNF311 most significantly hypermethylated in males and females, respectively. RNA-sequencing identified 152 genes significantly sexually dimorphic at false discovery rate < 0.05. The 151 DMPs were associated with 18 genes with gene downregulation (P < 0.05) in the direction of hypermethylation, including 2 genes significant at false discovery rate < 0.05 (ZNF300 and CUB and Sushi multiple domains 1, CSMD1). Both genes, as well as Family With Sequence Similarity 228 Member A (FAM228A), showed significant correlation between DNA methylation and sexually dimorphic gene expression, though FAM228A DNA methylation was less sexually dimorphic. Comparison with other sex differences studies found that cg17612569 is male-hypermethylated across gestation in placenta and in human blood up to adulthood.

Conclusions: Overall, sex dimorphic differential methylation with associated differential gene expression in the first trimester placenta is small, but there remain significant genes that may be regulated through methylation leading to differences in the first trimester placenta.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology of Sex Differences
Biology of Sex Differences ENDOCRINOLOGY & METABOLISM-GENETICS & HEREDITY
CiteScore
12.10
自引率
1.30%
发文量
69
审稿时长
14 weeks
期刊介绍: Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research. Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信