Ashlyn G Anderson, Belle A Moyers, Jacob M Loupe, Ivan Rodriguez-Nunez, Stephanie A Felker, James M.J. Lawlor, William E Bunney, Blynn G Bunney, Preston M Cartagena, Adolfo Sequeira, Stanley Watson, Huda Akil, Eric M Mendenhall, Gregory M Cooper, Richard M. Myers
{"title":"人脑各区域的等位基因特异性转录因子结合提供了对 eQTL 的机理认识","authors":"Ashlyn G Anderson, Belle A Moyers, Jacob M Loupe, Ivan Rodriguez-Nunez, Stephanie A Felker, James M.J. Lawlor, William E Bunney, Blynn G Bunney, Preston M Cartagena, Adolfo Sequeira, Stanley Watson, Huda Akil, Eric M Mendenhall, Gregory M Cooper, Richard M. Myers","doi":"10.1101/gr.278601.123","DOIUrl":null,"url":null,"abstract":"Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific <em>cis</em>-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of <em>cis</em>-regulatory variation in human brain tissue.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"38 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allele specific transcription factor binding across human brain regions offers mechanistic insight into eQTLs\",\"authors\":\"Ashlyn G Anderson, Belle A Moyers, Jacob M Loupe, Ivan Rodriguez-Nunez, Stephanie A Felker, James M.J. Lawlor, William E Bunney, Blynn G Bunney, Preston M Cartagena, Adolfo Sequeira, Stanley Watson, Huda Akil, Eric M Mendenhall, Gregory M Cooper, Richard M. Myers\",\"doi\":\"10.1101/gr.278601.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific <em>cis</em>-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of <em>cis</em>-regulatory variation in human brain tissue.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.278601.123\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.278601.123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Allele specific transcription factor binding across human brain regions offers mechanistic insight into eQTLs
Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific cis-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of cis-regulatory variation in human brain tissue.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.