用于超高能量密度钠离子袋电池的硒化钴结构和空缺辅助工程设计

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Ziling Huang, Jing Liu, Kang Xu, Yue Li, Yajun Tan, Chencheng Sun, Jun Yang and Hongbo Geng
{"title":"用于超高能量密度钠离子袋电池的硒化钴结构和空缺辅助工程设计","authors":"Ziling Huang, Jing Liu, Kang Xu, Yue Li, Yajun Tan, Chencheng Sun, Jun Yang and Hongbo Geng","doi":"10.1039/D4QI01573H","DOIUrl":null,"url":null,"abstract":"<p >Cobalt selenide (CoSe) exhibits potential as an anode material in sodium-ion batteries (SIBs), but challenges remain in achieving stable Na<small><sup>+</sup></small> storage and high energy density full cells by controlling CoSe. In this work, multi-scale modulation of CoSe was achieved through structural and vacancy engineering. Specifically, a phosphorus-doped Co<small><sub>0.85</sub></small>Se@nitrogen-doped carbon hollow nanobox (P-Co<small><sub>0.85</sub></small>Se@PNC) was constructed by optimizing pyrolysis of chemically-modified ZIF-67 templates followed by selenization and <em>in situ</em> P doping. The P-Co<small><sub>0.85</sub></small>Se@PNC prepared by the multi-step method possesses a homogeneous, hollow structure, effectively mitigating the volume stress caused by sodium ion extraction during cycling. The effective doping of P elements in Co<small><sub>0.85</sub></small>Se@NC introduces vacancies and increases the lattice spacing, facilitating Na<small><sup>+</sup></small> transport. During sodium ion half-cell performance evaluation, the P-Co<small><sub>0.85</sub></small>Se@PNC material demonstrates robust electrochemical behavior, showcasing a consistent and reversible specific capacity of 351.52 mA h g<small><sup>−1</sup></small> over 100 cycles at 1 A g<small><sup>−1</sup></small>. Moreover, it exhibits remarkable cycling stability, experiencing only a negligible 0.075% capacity decay after 1000 cycles at a high current density of 10 A g<small><sup>−1</sup></small>. Detailed kinetic analysis of the P-Co<small><sub>0.85</sub></small>Se@PNC, along with dynamic crystalline phase/morphological changes during charge and discharge processes, elucidated its Na<small><sup>+</sup></small> extraction mechanism. In order to broaden the utilization of P-Co<small><sub>0.85</sub></small>Se@PNC anode materials in SIBs, a pouch cell assembly incorporating P-Co<small><sub>0.85</sub></small>Se@PNC and NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small> was employed. Examination revealed the attainment of an extraordinarily high energy density, reaching 205.63 W h kg<small><sup>−1</sup></small> (power density: 330 W kg<small><sup>−1</sup></small>), concomitant with flexible attributes. This study provides a blueprint for material optimization and high-energy density device applications based on cobalt selenide sodium-ion battery anodes.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 19","pages":" 6564-6576"},"PeriodicalIF":6.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and vacancy assisted engineering of cobalt selenide for ultrahigh energy density sodium ion pouch cell†\",\"authors\":\"Ziling Huang, Jing Liu, Kang Xu, Yue Li, Yajun Tan, Chencheng Sun, Jun Yang and Hongbo Geng\",\"doi\":\"10.1039/D4QI01573H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cobalt selenide (CoSe) exhibits potential as an anode material in sodium-ion batteries (SIBs), but challenges remain in achieving stable Na<small><sup>+</sup></small> storage and high energy density full cells by controlling CoSe. In this work, multi-scale modulation of CoSe was achieved through structural and vacancy engineering. Specifically, a phosphorus-doped Co<small><sub>0.85</sub></small>Se@nitrogen-doped carbon hollow nanobox (P-Co<small><sub>0.85</sub></small>Se@PNC) was constructed by optimizing pyrolysis of chemically-modified ZIF-67 templates followed by selenization and <em>in situ</em> P doping. The P-Co<small><sub>0.85</sub></small>Se@PNC prepared by the multi-step method possesses a homogeneous, hollow structure, effectively mitigating the volume stress caused by sodium ion extraction during cycling. The effective doping of P elements in Co<small><sub>0.85</sub></small>Se@NC introduces vacancies and increases the lattice spacing, facilitating Na<small><sup>+</sup></small> transport. During sodium ion half-cell performance evaluation, the P-Co<small><sub>0.85</sub></small>Se@PNC material demonstrates robust electrochemical behavior, showcasing a consistent and reversible specific capacity of 351.52 mA h g<small><sup>−1</sup></small> over 100 cycles at 1 A g<small><sup>−1</sup></small>. Moreover, it exhibits remarkable cycling stability, experiencing only a negligible 0.075% capacity decay after 1000 cycles at a high current density of 10 A g<small><sup>−1</sup></small>. Detailed kinetic analysis of the P-Co<small><sub>0.85</sub></small>Se@PNC, along with dynamic crystalline phase/morphological changes during charge and discharge processes, elucidated its Na<small><sup>+</sup></small> extraction mechanism. In order to broaden the utilization of P-Co<small><sub>0.85</sub></small>Se@PNC anode materials in SIBs, a pouch cell assembly incorporating P-Co<small><sub>0.85</sub></small>Se@PNC and NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small> was employed. Examination revealed the attainment of an extraordinarily high energy density, reaching 205.63 W h kg<small><sup>−1</sup></small> (power density: 330 W kg<small><sup>−1</sup></small>), concomitant with flexible attributes. This study provides a blueprint for material optimization and high-energy density device applications based on cobalt selenide sodium-ion battery anodes.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 19\",\"pages\":\" 6564-6576\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01573h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01573h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

硒化钴(CoSe)作为钠离子电池(SIB)的阳极材料具有潜力,但通过控制 CoSe 实现稳定的 Na+ 储存和高能量密度全电池仍面临挑战。在这项工作中,通过结构和空位工程实现了 CoSe 的多尺度调制。具体来说,通过优化化学修饰 ZIF-67 模板的热解,然后进行硒化和原位掺杂 P,构建了磷掺杂 Co0.85Se@氮掺杂碳中空纳米盒(P-Co0.85Se@PNC)。通过多步骤方法制备的 P-Co0.85Se@PNC 具有均匀的中空结构,可有效减轻循环过程中钠离子萃取造成的体积应力。Co0.85Se@NC 中 P 元素的有效掺杂引入了空位并增加了晶格间距,从而促进了 Na+ 的传输。在钠离子半电池性能评估过程中,P-Co0.85Se@PNC 材料表现出了强大的电化学性能,在 1 A g-1 的条件下循环 100 次后,比容量达到 351.52 mAh g-1,且具有一致性和可逆性。此外,它还表现出卓越的循环稳定性,在 10 A g-1 的高电流密度下循环 1000 次后,容量衰减仅为 0.075%,可以忽略不计。对 P-Co0.85Se@PNC 的详细动力学分析,以及充电和放电过程中晶体相/形态的动态变化,阐明了其 Na+ 提取机制。为了扩大 P-Co0.85Se@PNC 阳极材料在 SIB 中的应用范围,我们采用了 P-Co0.85Se@PNC 和 NaNi1/3Fe1/3Mn1/3O2 的袋式电池组件。研究表明,该电池具有超高的能量密度,达到 205.63 Wh kg-1(功率密度:330 W kg-1),同时还具有柔性特性。这项研究为基于硒化钴钠离子电池阳极的材料优化和高能量密度设备应用提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural and vacancy assisted engineering of cobalt selenide for ultrahigh energy density sodium ion pouch cell†

Structural and vacancy assisted engineering of cobalt selenide for ultrahigh energy density sodium ion pouch cell†

Cobalt selenide (CoSe) exhibits potential as an anode material in sodium-ion batteries (SIBs), but challenges remain in achieving stable Na+ storage and high energy density full cells by controlling CoSe. In this work, multi-scale modulation of CoSe was achieved through structural and vacancy engineering. Specifically, a phosphorus-doped Co0.85Se@nitrogen-doped carbon hollow nanobox (P-Co0.85Se@PNC) was constructed by optimizing pyrolysis of chemically-modified ZIF-67 templates followed by selenization and in situ P doping. The P-Co0.85Se@PNC prepared by the multi-step method possesses a homogeneous, hollow structure, effectively mitigating the volume stress caused by sodium ion extraction during cycling. The effective doping of P elements in Co0.85Se@NC introduces vacancies and increases the lattice spacing, facilitating Na+ transport. During sodium ion half-cell performance evaluation, the P-Co0.85Se@PNC material demonstrates robust electrochemical behavior, showcasing a consistent and reversible specific capacity of 351.52 mA h g−1 over 100 cycles at 1 A g−1. Moreover, it exhibits remarkable cycling stability, experiencing only a negligible 0.075% capacity decay after 1000 cycles at a high current density of 10 A g−1. Detailed kinetic analysis of the P-Co0.85Se@PNC, along with dynamic crystalline phase/morphological changes during charge and discharge processes, elucidated its Na+ extraction mechanism. In order to broaden the utilization of P-Co0.85Se@PNC anode materials in SIBs, a pouch cell assembly incorporating P-Co0.85Se@PNC and NaNi1/3Fe1/3Mn1/3O2 was employed. Examination revealed the attainment of an extraordinarily high energy density, reaching 205.63 W h kg−1 (power density: 330 W kg−1), concomitant with flexible attributes. This study provides a blueprint for material optimization and high-energy density device applications based on cobalt selenide sodium-ion battery anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信