奇异芳香 B 系列的通用等差数列特性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Adrien Laurent, Hans Munthe-Kaas
{"title":"奇异芳香 B 系列的通用等差数列特性","authors":"Adrien Laurent, Hans Munthe-Kaas","doi":"10.1007/s10208-024-09668-5","DOIUrl":null,"url":null,"abstract":"<p>The exotic aromatic Butcher series were originally introduced for the calculation of order conditions for the high order numerical integration of ergodic stochastic differential equations in <span>\\(\\mathbb {R} ^d\\)</span> and on manifolds. We prove in this paper that exotic aromatic B-series satisfy a universal geometric property, namely that they are characterised by locality and equivariance with respect to orthogonal changes of coordinates. This characterisation confirms that exotic aromatic B-series are a fundamental geometric object that naturally generalises aromatic B-series and B-series, as they share similar equivariance properties. In addition, we provide a classification of the main subsets of the exotic aromatic B-series, in particular the exotic B-series, using different equivariance properties. Along the analysis, we present a generalised definition of exotic aromatic trees, dual vector fields, and we explore the impact of degeneracies on the classification.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Universal Equivariance Properties of Exotic Aromatic B-Series\",\"authors\":\"Adrien Laurent, Hans Munthe-Kaas\",\"doi\":\"10.1007/s10208-024-09668-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exotic aromatic Butcher series were originally introduced for the calculation of order conditions for the high order numerical integration of ergodic stochastic differential equations in <span>\\\\(\\\\mathbb {R} ^d\\\\)</span> and on manifolds. We prove in this paper that exotic aromatic B-series satisfy a universal geometric property, namely that they are characterised by locality and equivariance with respect to orthogonal changes of coordinates. This characterisation confirms that exotic aromatic B-series are a fundamental geometric object that naturally generalises aromatic B-series and B-series, as they share similar equivariance properties. In addition, we provide a classification of the main subsets of the exotic aromatic B-series, in particular the exotic B-series, using different equivariance properties. Along the analysis, we present a generalised definition of exotic aromatic trees, dual vector fields, and we explore the impact of degeneracies on the classification.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09668-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09668-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

奇异芳香布彻数列最初是为了计算 \(\mathbb {R} ^d\)和流形上的遍历随机微分方程的高阶数值积分的阶次条件而引入的。我们在本文中证明了奇异芳香 B 系列满足一个普遍的几何性质,即它们具有关于坐标正交变化的局部性和等差性。这一特性证实了奇异芳香 B 系列是一个基本几何对象,它自然地概括了芳香 B 系列和 B 系列,因为它们具有相似的等差数列特性。此外,我们还利用不同的等差数列性质,对奇异芳香 B 系列,特别是奇异 B 系列的主要子集进行了分类。在分析过程中,我们提出了外来芳香树、对偶向量场的广义定义,并探讨了退化对分类的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Universal Equivariance Properties of Exotic Aromatic B-Series

The Universal Equivariance Properties of Exotic Aromatic B-Series

The exotic aromatic Butcher series were originally introduced for the calculation of order conditions for the high order numerical integration of ergodic stochastic differential equations in \(\mathbb {R} ^d\) and on manifolds. We prove in this paper that exotic aromatic B-series satisfy a universal geometric property, namely that they are characterised by locality and equivariance with respect to orthogonal changes of coordinates. This characterisation confirms that exotic aromatic B-series are a fundamental geometric object that naturally generalises aromatic B-series and B-series, as they share similar equivariance properties. In addition, we provide a classification of the main subsets of the exotic aromatic B-series, in particular the exotic B-series, using different equivariance properties. Along the analysis, we present a generalised definition of exotic aromatic trees, dual vector fields, and we explore the impact of degeneracies on the classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信