Víctor Lorente-López, Ricardo Pérez-Feito, Álvaro Montero, Abel García-Bernabé
{"title":"燃料电池应用中作为双极板的三维打印石墨烯-聚合物复合材料的动态力学性能","authors":"Víctor Lorente-López, Ricardo Pérez-Feito, Álvaro Montero, Abel García-Bernabé","doi":"10.1002/masy.202400025","DOIUrl":null,"url":null,"abstract":"<p>A graphene–polymer composite is used in the manufacture by 3D printing of bipolar plates for fuel cells. This composite is formed by a PVDF matrix with graphene. The thermal and dynamic mechanical characterization of this composite is studied, as well as the density of printed composite. The study finds that the material studied is a semicrystal polymer and is thermally stable. Density depends on filler in 3D printing, decreasing with fill percentage. The mechanical properties of these materials are good for fuel cell applications.</p>","PeriodicalId":18107,"journal":{"name":"Macromolecular Symposia","volume":"413 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/masy.202400025","citationCount":"0","resultStr":"{\"title\":\"Dynamic Mechanical Properties of 3D Printable Graphene–Polymer Composite as Bipolar Plates in Fuel Cell Applications\",\"authors\":\"Víctor Lorente-López, Ricardo Pérez-Feito, Álvaro Montero, Abel García-Bernabé\",\"doi\":\"10.1002/masy.202400025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A graphene–polymer composite is used in the manufacture by 3D printing of bipolar plates for fuel cells. This composite is formed by a PVDF matrix with graphene. The thermal and dynamic mechanical characterization of this composite is studied, as well as the density of printed composite. The study finds that the material studied is a semicrystal polymer and is thermally stable. Density depends on filler in 3D printing, decreasing with fill percentage. The mechanical properties of these materials are good for fuel cell applications.</p>\",\"PeriodicalId\":18107,\"journal\":{\"name\":\"Macromolecular Symposia\",\"volume\":\"413 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/masy.202400025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/masy.202400025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/masy.202400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Dynamic Mechanical Properties of 3D Printable Graphene–Polymer Composite as Bipolar Plates in Fuel Cell Applications
A graphene–polymer composite is used in the manufacture by 3D printing of bipolar plates for fuel cells. This composite is formed by a PVDF matrix with graphene. The thermal and dynamic mechanical characterization of this composite is studied, as well as the density of printed composite. The study finds that the material studied is a semicrystal polymer and is thermally stable. Density depends on filler in 3D printing, decreasing with fill percentage. The mechanical properties of these materials are good for fuel cell applications.
期刊介绍:
Macromolecular Symposia presents state-of-the-art research articles in the field of macromolecular chemistry and physics. All submitted contributions are peer-reviewed to ensure a high quality of published manuscripts. Accepted articles will be typeset and published as a hardcover edition together with online publication at Wiley InterScience, thereby guaranteeing an immediate international dissemination.