Feng Zhang, James W. Head, Lionel Wilson, Yibo Meng, Christian Wӧhler, Dijun Guo, Shengli Niu, Roberto Bugiolacchi, Le Qiao, Yanan Dang, Yang Liu, Yongliao Zou
{"title":"从静止火海环状穹隆结构(RMDS)叠加的火海穹隆洞察月球玄武岩火山活动","authors":"Feng Zhang, James W. Head, Lionel Wilson, Yibo Meng, Christian Wӧhler, Dijun Guo, Shengli Niu, Roberto Bugiolacchi, Le Qiao, Yanan Dang, Yang Liu, Yongliao Zou","doi":"10.1029/2023JE007969","DOIUrl":null,"url":null,"abstract":"<p>Mare domes (interpreted to be a type of shield volcano) represent one important endmember of a variety of volcanic edifices occurring across the volcanic plains on the Moon, whereas Ring-Moat Dome Structures (RMDSs) are interpreted to reflect the thermodynamic behavior of plain-forming mare flows during their emplacement and cooling. A comprehensive study of the direct association between mare domes and RMDSs can not only provide deep insights into their formation mechanisms but also yield key information on the nature of mantle sources. We characterized a total of 200 mare domes and more than 6,400 RMDSs within Mare Tranquillitatis using multiple sets of imagery and topography data. RMDS-bearing domes (80 out of 200) are on average larger than those hosting no RMDSs (average diameter 10.2 vs. 5.5 km) and have lower height/diameter (H/D) ratios (0.01 vs. 0.02) and flank slopes (1.2° vs. 2°). We attribute the presence of RMDSs on some domes to be due to relatively higher effusion rates forming longer thinner flows, producing favorable conditions for the formation of RMDSs. The average diameter of the RMDSs on mare domes (226 m, <i>n</i> = 1,027) appears to be slightly smaller than those located in mare plains (256 m, <i>n</i> = 527). This may be due to slope effects and that the relatively thicker off-dome part of flows undergoes a relatively higher degree inflation process, producing slightly larger RMDSs. We adapt the RMDS-formation theoretical model to shallow subcrustal magma reservoir model to account for the Tranquillitatis dome-RMDS associations.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE007969","citationCount":"0","resultStr":"{\"title\":\"Insights Into Lunar Basaltic Volcanism From Mare Domes Superposed by Ring-Moat Dome Structures (RMDSs) in Mare Tranquillitatis\",\"authors\":\"Feng Zhang, James W. Head, Lionel Wilson, Yibo Meng, Christian Wӧhler, Dijun Guo, Shengli Niu, Roberto Bugiolacchi, Le Qiao, Yanan Dang, Yang Liu, Yongliao Zou\",\"doi\":\"10.1029/2023JE007969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mare domes (interpreted to be a type of shield volcano) represent one important endmember of a variety of volcanic edifices occurring across the volcanic plains on the Moon, whereas Ring-Moat Dome Structures (RMDSs) are interpreted to reflect the thermodynamic behavior of plain-forming mare flows during their emplacement and cooling. A comprehensive study of the direct association between mare domes and RMDSs can not only provide deep insights into their formation mechanisms but also yield key information on the nature of mantle sources. We characterized a total of 200 mare domes and more than 6,400 RMDSs within Mare Tranquillitatis using multiple sets of imagery and topography data. RMDS-bearing domes (80 out of 200) are on average larger than those hosting no RMDSs (average diameter 10.2 vs. 5.5 km) and have lower height/diameter (H/D) ratios (0.01 vs. 0.02) and flank slopes (1.2° vs. 2°). We attribute the presence of RMDSs on some domes to be due to relatively higher effusion rates forming longer thinner flows, producing favorable conditions for the formation of RMDSs. The average diameter of the RMDSs on mare domes (226 m, <i>n</i> = 1,027) appears to be slightly smaller than those located in mare plains (256 m, <i>n</i> = 527). This may be due to slope effects and that the relatively thicker off-dome part of flows undergoes a relatively higher degree inflation process, producing slightly larger RMDSs. We adapt the RMDS-formation theoretical model to shallow subcrustal magma reservoir model to account for the Tranquillitatis dome-RMDS associations.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE007969\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JE007969\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE007969","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Insights Into Lunar Basaltic Volcanism From Mare Domes Superposed by Ring-Moat Dome Structures (RMDSs) in Mare Tranquillitatis
Mare domes (interpreted to be a type of shield volcano) represent one important endmember of a variety of volcanic edifices occurring across the volcanic plains on the Moon, whereas Ring-Moat Dome Structures (RMDSs) are interpreted to reflect the thermodynamic behavior of plain-forming mare flows during their emplacement and cooling. A comprehensive study of the direct association between mare domes and RMDSs can not only provide deep insights into their formation mechanisms but also yield key information on the nature of mantle sources. We characterized a total of 200 mare domes and more than 6,400 RMDSs within Mare Tranquillitatis using multiple sets of imagery and topography data. RMDS-bearing domes (80 out of 200) are on average larger than those hosting no RMDSs (average diameter 10.2 vs. 5.5 km) and have lower height/diameter (H/D) ratios (0.01 vs. 0.02) and flank slopes (1.2° vs. 2°). We attribute the presence of RMDSs on some domes to be due to relatively higher effusion rates forming longer thinner flows, producing favorable conditions for the formation of RMDSs. The average diameter of the RMDSs on mare domes (226 m, n = 1,027) appears to be slightly smaller than those located in mare plains (256 m, n = 527). This may be due to slope effects and that the relatively thicker off-dome part of flows undergoes a relatively higher degree inflation process, producing slightly larger RMDSs. We adapt the RMDS-formation theoretical model to shallow subcrustal magma reservoir model to account for the Tranquillitatis dome-RMDS associations.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.