José T. Moreira-Filho, Dhruv Ranganath, Mike Conway, Charles Schmitt, Nicole Kleinstreuer, Kamel Mansouri
{"title":"化学信息学民主化:利用 KNIME 自动工作流程进行可解释的化学分组","authors":"José T. Moreira-Filho, Dhruv Ranganath, Mike Conway, Charles Schmitt, Nicole Kleinstreuer, Kamel Mansouri","doi":"10.1186/s13321-024-00894-1","DOIUrl":null,"url":null,"abstract":"<div><p>With the increased availability of chemical data in public databases, innovative techniques and algorithms have emerged for the analysis, exploration, visualization, and extraction of information from these data. One such technique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical grouping often require specialized programming skills or the use of commercial software packages. To address these challenges, we developed a user-friendly chemical grouping workflow implemented in KNIME, a free, open-source, low/no-code, data analytics platform. The workflow serves as an all-encompassing tool, expertly incorporating a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperparameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descriptors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings. The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal as a web application. It incorporates interactive interfaces and guides to assist users in a step-by-step manner. We demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.</p><p><b>Scientific contributions</b></p><p>This work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by integrating a user-friendly graphical interface that eliminates the need for extensive programming skills. This workflow uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimensionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing the usability of the tool and interpretability of the results.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00894-1","citationCount":"0","resultStr":"{\"title\":\"Democratizing cheminformatics: interpretable chemical grouping using an automated KNIME workflow\",\"authors\":\"José T. Moreira-Filho, Dhruv Ranganath, Mike Conway, Charles Schmitt, Nicole Kleinstreuer, Kamel Mansouri\",\"doi\":\"10.1186/s13321-024-00894-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increased availability of chemical data in public databases, innovative techniques and algorithms have emerged for the analysis, exploration, visualization, and extraction of information from these data. One such technique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical grouping often require specialized programming skills or the use of commercial software packages. To address these challenges, we developed a user-friendly chemical grouping workflow implemented in KNIME, a free, open-source, low/no-code, data analytics platform. The workflow serves as an all-encompassing tool, expertly incorporating a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperparameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descriptors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings. The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal as a web application. It incorporates interactive interfaces and guides to assist users in a step-by-step manner. We demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.</p><p><b>Scientific contributions</b></p><p>This work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by integrating a user-friendly graphical interface that eliminates the need for extensive programming skills. This workflow uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimensionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing the usability of the tool and interpretability of the results.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00894-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00894-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00894-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Democratizing cheminformatics: interpretable chemical grouping using an automated KNIME workflow
With the increased availability of chemical data in public databases, innovative techniques and algorithms have emerged for the analysis, exploration, visualization, and extraction of information from these data. One such technique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical grouping often require specialized programming skills or the use of commercial software packages. To address these challenges, we developed a user-friendly chemical grouping workflow implemented in KNIME, a free, open-source, low/no-code, data analytics platform. The workflow serves as an all-encompassing tool, expertly incorporating a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperparameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descriptors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings. The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal as a web application. It incorporates interactive interfaces and guides to assist users in a step-by-step manner. We demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.
Scientific contributions
This work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by integrating a user-friendly graphical interface that eliminates the need for extensive programming skills. This workflow uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimensionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing the usability of the tool and interpretability of the results.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.