{"title":"在线两阶段柔性装配流程车间调度的多级行动耦合强化学习方法","authors":"Junhao Qiu, Jianjun Liu, Zhantao Li, Xinjun Lai","doi":"10.1016/j.jmsy.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-product centralized delivery and kitting assembly present significant challenges to hierarchical co-processing in multi-stage manufacturing systems. The combinations of priority dispatching rules at each level are transiently adaptive, and the performance in online scheduling deteriorates rapidly with changing environment. This paper investigates the selection of rule combinations for sustained high-performance responsive scheduling in two-stage flexible assembly flow shop scheduling problem with asynchronous execution and complex decision correlation. A Multi-Level Action Coupling Deep Q-Network (MALC-DQN) approach is proposed for adaptive integrated scheduling in hybrid processing and assembly shops. Firstly, the problem is skillfully established as an event-triggered integrated decision markov decision process. The prioritized batch experience replay mechanism is employed to retain the complete correlation information of key decision sequences. Then, coupling and sequence feature extraction modules are developed to enhance the agent’s ability to perceive execution process and the environment. Furthermore, the multi-level wait-limit mechanism and efficient action filtering mechanism are designed to mitigate ineffective waiting waste and action space explosion during learning. Finally, a series of sophisticated experiments are conducted to validate the effectiveness of the proposed methodology. In 20 actual instances of different sizes, MLAC-DQN outperformed its closest competitor, with a 26.6% improvement in average tardiness. Moreover, extraordinary robustness is demonstrated in 16 sets of experiments involving different configurations of resources, orders, and arrival concentration levels.</p></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"76 ","pages":"Pages 351-370"},"PeriodicalIF":12.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-level action coupling reinforcement learning approach for online two-stage flexible assembly flow shop scheduling\",\"authors\":\"Junhao Qiu, Jianjun Liu, Zhantao Li, Xinjun Lai\",\"doi\":\"10.1016/j.jmsy.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-product centralized delivery and kitting assembly present significant challenges to hierarchical co-processing in multi-stage manufacturing systems. The combinations of priority dispatching rules at each level are transiently adaptive, and the performance in online scheduling deteriorates rapidly with changing environment. This paper investigates the selection of rule combinations for sustained high-performance responsive scheduling in two-stage flexible assembly flow shop scheduling problem with asynchronous execution and complex decision correlation. A Multi-Level Action Coupling Deep Q-Network (MALC-DQN) approach is proposed for adaptive integrated scheduling in hybrid processing and assembly shops. Firstly, the problem is skillfully established as an event-triggered integrated decision markov decision process. The prioritized batch experience replay mechanism is employed to retain the complete correlation information of key decision sequences. Then, coupling and sequence feature extraction modules are developed to enhance the agent’s ability to perceive execution process and the environment. Furthermore, the multi-level wait-limit mechanism and efficient action filtering mechanism are designed to mitigate ineffective waiting waste and action space explosion during learning. Finally, a series of sophisticated experiments are conducted to validate the effectiveness of the proposed methodology. In 20 actual instances of different sizes, MLAC-DQN outperformed its closest competitor, with a 26.6% improvement in average tardiness. Moreover, extraordinary robustness is demonstrated in 16 sets of experiments involving different configurations of resources, orders, and arrival concentration levels.</p></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"76 \",\"pages\":\"Pages 351-370\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524001699\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524001699","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A multi-level action coupling reinforcement learning approach for online two-stage flexible assembly flow shop scheduling
Multi-product centralized delivery and kitting assembly present significant challenges to hierarchical co-processing in multi-stage manufacturing systems. The combinations of priority dispatching rules at each level are transiently adaptive, and the performance in online scheduling deteriorates rapidly with changing environment. This paper investigates the selection of rule combinations for sustained high-performance responsive scheduling in two-stage flexible assembly flow shop scheduling problem with asynchronous execution and complex decision correlation. A Multi-Level Action Coupling Deep Q-Network (MALC-DQN) approach is proposed for adaptive integrated scheduling in hybrid processing and assembly shops. Firstly, the problem is skillfully established as an event-triggered integrated decision markov decision process. The prioritized batch experience replay mechanism is employed to retain the complete correlation information of key decision sequences. Then, coupling and sequence feature extraction modules are developed to enhance the agent’s ability to perceive execution process and the environment. Furthermore, the multi-level wait-limit mechanism and efficient action filtering mechanism are designed to mitigate ineffective waiting waste and action space explosion during learning. Finally, a series of sophisticated experiments are conducted to validate the effectiveness of the proposed methodology. In 20 actual instances of different sizes, MLAC-DQN outperformed its closest competitor, with a 26.6% improvement in average tardiness. Moreover, extraordinary robustness is demonstrated in 16 sets of experiments involving different configurations of resources, orders, and arrival concentration levels.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.