确定锂离子电池 PNGV 模型参数的新方法

Q3 Engineering
M. Lagraoui , A. Nejmi
{"title":"确定锂离子电池 PNGV 模型参数的新方法","authors":"M. Lagraoui ,&nbsp;A. Nejmi","doi":"10.1016/j.ifacol.2024.07.453","DOIUrl":null,"url":null,"abstract":"<div><p>The article delves into modeling the Li-ion cell and the prerequisites for identifying system parameters. Initially, we construct a model that encapsulates the nonlinearity of our cell, employing a PNGV model encompassing dynamic parameters like state of charge (SOC), open-circuit voltage OCV, C<sub>b</sub>, R<sub>0</sub>, R<sub>1</sub> and C<sub>1</sub>. Subsequent to this, pertinent battery discharge tests are conducted to discern the model parameters.</p><p>Commencing with establishing the relationship between state of charge (SOC) and the variable open-circuit voltage (OCV) using the least squares method, we progressed. Following determining thise relationship, cell discharge tests were employed to ascertain the values of R<sub>0</sub>, R<sub>1</sub> and C<sub>1</sub>. Once the various parameters of the PNGV Model are identified, validation of this established battery model is performed via experimental discharge tests. The resulting error indicates a mean absolute error (MAE) of 0.0176V for modeling, alongside a root mean square error (RMSE) of 0.0232V. These outcomes underscore the remarkable accuracy of our cell model.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 13","pages":"Pages 19-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324005524/pdf?md5=eefe71eed79fe9a4088546f8acd003e7&pid=1-s2.0-S2405896324005524-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new method for identifying the parameters of the Li-ion battery PNGV model\",\"authors\":\"M. Lagraoui ,&nbsp;A. Nejmi\",\"doi\":\"10.1016/j.ifacol.2024.07.453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article delves into modeling the Li-ion cell and the prerequisites for identifying system parameters. Initially, we construct a model that encapsulates the nonlinearity of our cell, employing a PNGV model encompassing dynamic parameters like state of charge (SOC), open-circuit voltage OCV, C<sub>b</sub>, R<sub>0</sub>, R<sub>1</sub> and C<sub>1</sub>. Subsequent to this, pertinent battery discharge tests are conducted to discern the model parameters.</p><p>Commencing with establishing the relationship between state of charge (SOC) and the variable open-circuit voltage (OCV) using the least squares method, we progressed. Following determining thise relationship, cell discharge tests were employed to ascertain the values of R<sub>0</sub>, R<sub>1</sub> and C<sub>1</sub>. Once the various parameters of the PNGV Model are identified, validation of this established battery model is performed via experimental discharge tests. The resulting error indicates a mean absolute error (MAE) of 0.0176V for modeling, alongside a root mean square error (RMSE) of 0.0232V. These outcomes underscore the remarkable accuracy of our cell model.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 13\",\"pages\":\"Pages 19-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324005524/pdf?md5=eefe71eed79fe9a4088546f8acd003e7&pid=1-s2.0-S2405896324005524-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324005524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324005524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

文章深入探讨了锂离子电池建模和确定系统参数的先决条件。首先,我们构建了一个包含电池非线性特性的模型,采用了一个 PNGV 模型,其中包含动态参数,如充电状态 (SOC)、开路电压 OCV、Cb、R0、R1 和 C1。首先,我们使用最小二乘法建立了充电状态(SOC)与可变开路电压(OCV)之间的关系。在确定这种关系后,我们进行了电池放电测试,以确定 R0、R1 和 C1 的值。一旦确定了 PNGV 模型的各种参数,就可以通过实验放电测试来验证所建立的电池模型。结果误差表明,建模的平均绝对误差 (MAE) 为 0.0176V,均方根误差 (RMSE) 为 0.0232V。这些结果表明我们的电池模型非常准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for identifying the parameters of the Li-ion battery PNGV model

The article delves into modeling the Li-ion cell and the prerequisites for identifying system parameters. Initially, we construct a model that encapsulates the nonlinearity of our cell, employing a PNGV model encompassing dynamic parameters like state of charge (SOC), open-circuit voltage OCV, Cb, R0, R1 and C1. Subsequent to this, pertinent battery discharge tests are conducted to discern the model parameters.

Commencing with establishing the relationship between state of charge (SOC) and the variable open-circuit voltage (OCV) using the least squares method, we progressed. Following determining thise relationship, cell discharge tests were employed to ascertain the values of R0, R1 and C1. Once the various parameters of the PNGV Model are identified, validation of this established battery model is performed via experimental discharge tests. The resulting error indicates a mean absolute error (MAE) of 0.0176V for modeling, alongside a root mean square error (RMSE) of 0.0232V. These outcomes underscore the remarkable accuracy of our cell model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信