基于超图聚类的多标签跨模态检索

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shengtang Guo , Huaxiang Zhang , Li Liu , Dongmei Liu , Xu Lu , Liujian Li
{"title":"基于超图聚类的多标签跨模态检索","authors":"Shengtang Guo ,&nbsp;Huaxiang Zhang ,&nbsp;Li Liu ,&nbsp;Dongmei Liu ,&nbsp;Xu Lu ,&nbsp;Liujian Li","doi":"10.1016/j.jvcir.2024.104258","DOIUrl":null,"url":null,"abstract":"<div><p>Most existing cross-modal retrieval methods face challenges in establishing semantic connections between different modalities due to inherent heterogeneity among them. To establish semantic connections between different modalities and align relevant semantic features across modalities, so as to fully capture important information within the same modality, this paper considers the superiority of hypergraph in representing higher-order relationships, and proposes an image-text retrieval method based on hypergraph clustering. Specifically, we construct hypergraphs to capture feature relationships within image and text modalities, as well as between image and text. This allows us to effectively model complex relationships between features of different modalities and explore the semantic connectivity within and across modalities. To compensate for potential semantic feature loss during the construction of the hypergraph neural network, we design a weight-adaptive coarse and fine-grained feature fusion module for semantic supplementation. Comprehensive experimental results on three common datasets demonstrate the effectiveness of the proposed method.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"103 ","pages":"Article 104258"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergraph clustering based multi-label cross-modal retrieval\",\"authors\":\"Shengtang Guo ,&nbsp;Huaxiang Zhang ,&nbsp;Li Liu ,&nbsp;Dongmei Liu ,&nbsp;Xu Lu ,&nbsp;Liujian Li\",\"doi\":\"10.1016/j.jvcir.2024.104258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most existing cross-modal retrieval methods face challenges in establishing semantic connections between different modalities due to inherent heterogeneity among them. To establish semantic connections between different modalities and align relevant semantic features across modalities, so as to fully capture important information within the same modality, this paper considers the superiority of hypergraph in representing higher-order relationships, and proposes an image-text retrieval method based on hypergraph clustering. Specifically, we construct hypergraphs to capture feature relationships within image and text modalities, as well as between image and text. This allows us to effectively model complex relationships between features of different modalities and explore the semantic connectivity within and across modalities. To compensate for potential semantic feature loss during the construction of the hypergraph neural network, we design a weight-adaptive coarse and fine-grained feature fusion module for semantic supplementation. Comprehensive experimental results on three common datasets demonstrate the effectiveness of the proposed method.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"103 \",\"pages\":\"Article 104258\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002141\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002141","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于不同模态之间固有的异质性,大多数现有的跨模态检索方法在建立不同模态之间的语义联系方面面临挑战。为了建立不同模态之间的语义联系,并对跨模态的相关语义特征进行排列,从而充分捕捉同一模态内的重要信息,本文考虑到超图在表示高阶关系方面的优越性,提出了一种基于超图聚类的图像-文本检索方法。具体来说,我们构建超图来捕捉图像和文本模式内以及图像和文本之间的特征关系。这使我们能够有效地模拟不同模态特征之间的复杂关系,并探索模态内部和模态之间的语义连接。为了弥补超图神经网络构建过程中可能出现的语义特征损失,我们设计了一个权重自适应的粗粒度和细粒度特征融合模块,用于语义补充。在三个常见数据集上的综合实验结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergraph clustering based multi-label cross-modal retrieval

Most existing cross-modal retrieval methods face challenges in establishing semantic connections between different modalities due to inherent heterogeneity among them. To establish semantic connections between different modalities and align relevant semantic features across modalities, so as to fully capture important information within the same modality, this paper considers the superiority of hypergraph in representing higher-order relationships, and proposes an image-text retrieval method based on hypergraph clustering. Specifically, we construct hypergraphs to capture feature relationships within image and text modalities, as well as between image and text. This allows us to effectively model complex relationships between features of different modalities and explore the semantic connectivity within and across modalities. To compensate for potential semantic feature loss during the construction of the hypergraph neural network, we design a weight-adaptive coarse and fine-grained feature fusion module for semantic supplementation. Comprehensive experimental results on three common datasets demonstrate the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信