具有离散变量的均匀和非均匀灌注涂层结构的优化设计

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alain Garaigordobil, José Antonio Postigo, Rubén Ansola, Javier Canales
{"title":"具有离散变量的均匀和非均匀灌注涂层结构的优化设计","authors":"Alain Garaigordobil,&nbsp;José Antonio Postigo,&nbsp;Rubén Ansola,&nbsp;Javier Canales","doi":"10.1016/j.cad.2024.103781","DOIUrl":null,"url":null,"abstract":"<div><p>This article introduces a novel computer-aided procedure to design optimised coated structures with precise shell thickness control using the Smallest Univalue Segment Assimilating Nucleus operator and a novel augmentation-projection technique. Structures with heterogeneous sections, or coated structures, combine two different materials for the nucleus and the shell, which are generally chosen so that the material in the infill is lighter and the material in the coating is stiffer, which in this work are supposed homogeneous. Solving the interface problem requires material properties interpolation equations that consider three material phases, accurate placement of the coating over the base material, and precise control over the coating's thickness. The formation of the coating is controlled by the <em>Smallest Univalue Segment Assimilating Nucleus</em>, an edge detection operator developed in <em>Digital Image Processing</em>. The coating's thickness is controlled by an innovative methodology consisting of the projection of an augmented contour field, which is shown to create a constant thickness coating around the material domain. The optimisation problem is solved with the <em>Sequential Element Rejection and Admission</em> method. The validity of the procedure has been verified by solving various numerical application examples.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524001088/pdfft?md5=818e970a6501d02a83f834dc682faba0&pid=1-s2.0-S0010448524001088-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimum design of uniform and non-uniform infill-coated structures with discrete variables\",\"authors\":\"Alain Garaigordobil,&nbsp;José Antonio Postigo,&nbsp;Rubén Ansola,&nbsp;Javier Canales\",\"doi\":\"10.1016/j.cad.2024.103781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article introduces a novel computer-aided procedure to design optimised coated structures with precise shell thickness control using the Smallest Univalue Segment Assimilating Nucleus operator and a novel augmentation-projection technique. Structures with heterogeneous sections, or coated structures, combine two different materials for the nucleus and the shell, which are generally chosen so that the material in the infill is lighter and the material in the coating is stiffer, which in this work are supposed homogeneous. Solving the interface problem requires material properties interpolation equations that consider three material phases, accurate placement of the coating over the base material, and precise control over the coating's thickness. The formation of the coating is controlled by the <em>Smallest Univalue Segment Assimilating Nucleus</em>, an edge detection operator developed in <em>Digital Image Processing</em>. The coating's thickness is controlled by an innovative methodology consisting of the projection of an augmented contour field, which is shown to create a constant thickness coating around the material domain. The optimisation problem is solved with the <em>Sequential Element Rejection and Admission</em> method. The validity of the procedure has been verified by solving various numerical application examples.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001088/pdfft?md5=818e970a6501d02a83f834dc682faba0&pid=1-s2.0-S0010448524001088-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001088\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001088","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的计算机辅助程序,利用最小单值段同化核算子和新颖的增强投影技术,设计具有精确壳厚度控制的优化涂层结构。具有异质截面的结构或涂层结构结合了两种不同的材料作为核和壳,通常会选择填充材料较轻而涂层材料较硬的材料,在本研究中这两种材料被认为是同质的。解决界面问题需要考虑三相材料的材料特性插值方程、涂层在基体材料上的精确位置以及涂层厚度的精确控制。涂层的形成由最小同化核(Smallest Univalue Segment Assimilating Nucleus)控制,这是一种在数字图像处理中开发的边缘检测算子。涂层厚度由一种创新方法控制,该方法包括一个增强轮廓场的投影,该投影可在材料域周围形成恒定厚度的涂层。优化问题采用顺序元素剔除和接纳法来解决。通过解决各种数值应用实例,验证了该程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimum design of uniform and non-uniform infill-coated structures with discrete variables

Optimum design of uniform and non-uniform infill-coated structures with discrete variables

This article introduces a novel computer-aided procedure to design optimised coated structures with precise shell thickness control using the Smallest Univalue Segment Assimilating Nucleus operator and a novel augmentation-projection technique. Structures with heterogeneous sections, or coated structures, combine two different materials for the nucleus and the shell, which are generally chosen so that the material in the infill is lighter and the material in the coating is stiffer, which in this work are supposed homogeneous. Solving the interface problem requires material properties interpolation equations that consider three material phases, accurate placement of the coating over the base material, and precise control over the coating's thickness. The formation of the coating is controlled by the Smallest Univalue Segment Assimilating Nucleus, an edge detection operator developed in Digital Image Processing. The coating's thickness is controlled by an innovative methodology consisting of the projection of an augmented contour field, which is shown to create a constant thickness coating around the material domain. The optimisation problem is solved with the Sequential Element Rejection and Admission method. The validity of the procedure has been verified by solving various numerical application examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信