铅暴露后胼胝体的脱髓鞘和少突生成受损

IF 3.4 3区 医学 Q2 TOXICOLOGY
Luke L Liu, Uzay Emir, Huiying Gu, Lara T Sang, Stephen J Sawiak, Jason R Cannon, Yansheng Du, Wei Zheng
{"title":"铅暴露后胼胝体的脱髓鞘和少突生成受损","authors":"Luke L Liu, Uzay Emir, Huiying Gu, Lara T Sang, Stephen J Sawiak, Jason R Cannon, Yansheng Du, Wei Zheng","doi":"10.1093/toxsci/kfae100","DOIUrl":null,"url":null,"abstract":"<p><p>The corpus callosum is an oligodendrocyte-enriched brain region, replenished by newborn oligodendrocytes from oligodendrocyte progenitor cells (OPCs) in subventricular zone (SVZ). Lead (Pb) exposure has been associated with multiple sclerosis, a disease characterized by the loss of oligodendrocytes. This study aimed to investigate the effects of Pb exposure on oligodendrogenesis in SVZ and myelination in the corpus callosum. Adult female mice were used for a disproportionately higher prevalence of multiple sclerosis in females. Acute Pb exposure (one ip-injection of 27 mg Pb/kg as PbAc2 24 hr before sampling) caused mild Pb accumulation in the corpus callosum. Ex vivo assay using isolated SVZ tissues collected from acute Pb-exposed brains showed a diminished oligodendrogenesis in SVZ-derived neurospheres compared with controls. In vivo subchronic Pb exposure (13.5 mg Pb/kg by daily oral gavage 4 wk) revealed significantly decreased newborn BrdU+/MBP+ oligodendrocytes in the corpus callosum, suggesting demyelination. Mechanistic investigations indicated decreased Rictor in SVZ OPCs, defective self-defense pathways, and reactive gliosis in the corpus callosum. Given the interwined pathologies between multiple sclerosis and Alzheimer's disease, the effect of Pb on myelination was evaluated in AD-modeled APP/PS1 mice. Myelin MRI on mice following chronic exposure (1,000 ppm Pb in drinking water as PbAc2 for 20 wk) revealed a profound demyelination in the corpus callosum compared with controls. Immunostaining of the choroid plexus showed diminished signaling molecule (Klotho, OTX2) expressions in Pb-treated animals. These observations suggest that Pb caused demyelination in the corpus callosum, likely by disrupting oligodendrogenesis from SVZ OPCs. Pb-induced demyelination represents a crucial pathogenic pathway in Pb neurotoxicity, including multiple sclerosis.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Demyelination and impaired oligodendrogenesis in the corpus callosum following lead exposure.\",\"authors\":\"Luke L Liu, Uzay Emir, Huiying Gu, Lara T Sang, Stephen J Sawiak, Jason R Cannon, Yansheng Du, Wei Zheng\",\"doi\":\"10.1093/toxsci/kfae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The corpus callosum is an oligodendrocyte-enriched brain region, replenished by newborn oligodendrocytes from oligodendrocyte progenitor cells (OPCs) in subventricular zone (SVZ). Lead (Pb) exposure has been associated with multiple sclerosis, a disease characterized by the loss of oligodendrocytes. This study aimed to investigate the effects of Pb exposure on oligodendrogenesis in SVZ and myelination in the corpus callosum. Adult female mice were used for a disproportionately higher prevalence of multiple sclerosis in females. Acute Pb exposure (one ip-injection of 27 mg Pb/kg as PbAc2 24 hr before sampling) caused mild Pb accumulation in the corpus callosum. Ex vivo assay using isolated SVZ tissues collected from acute Pb-exposed brains showed a diminished oligodendrogenesis in SVZ-derived neurospheres compared with controls. In vivo subchronic Pb exposure (13.5 mg Pb/kg by daily oral gavage 4 wk) revealed significantly decreased newborn BrdU+/MBP+ oligodendrocytes in the corpus callosum, suggesting demyelination. Mechanistic investigations indicated decreased Rictor in SVZ OPCs, defective self-defense pathways, and reactive gliosis in the corpus callosum. Given the interwined pathologies between multiple sclerosis and Alzheimer's disease, the effect of Pb on myelination was evaluated in AD-modeled APP/PS1 mice. Myelin MRI on mice following chronic exposure (1,000 ppm Pb in drinking water as PbAc2 for 20 wk) revealed a profound demyelination in the corpus callosum compared with controls. Immunostaining of the choroid plexus showed diminished signaling molecule (Klotho, OTX2) expressions in Pb-treated animals. These observations suggest that Pb caused demyelination in the corpus callosum, likely by disrupting oligodendrogenesis from SVZ OPCs. Pb-induced demyelination represents a crucial pathogenic pathway in Pb neurotoxicity, including multiple sclerosis.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae100\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae100","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胼胝体是一个少突胶质细胞丰富的脑区,由室管膜下区(SVZ)的少突胶质祖细胞(OPC)新生的少突胶质细胞补充。铅(Pb)暴露与多发性硬化症(一种以少突胶质细胞丧失为特征的疾病)有关。本研究旨在探讨铅暴露对脑室下区少突胶质细胞生成和胼胝体髓鞘化的影响。由于多发性硬化症在雌性小鼠中的发病率较高,因此本研究使用成年雌性小鼠。急性铅暴露(取样前 24 小时一次静脉注射 27 毫克铅/千克(以 PbAc2 计))会导致胼胝体轻度铅蓄积。利用从急性铅暴露大脑中采集的分离 SVZ 组织进行的体内外检测显示,与对照组相比,SVZ 衍生神经球的少突生成减少。体内亚慢性铅暴露(13.5 毫克铅/千克,每天口服 4 周)显示,胼胝体中的新生 BrdU+/MBP+ 少突胶质细胞显著减少,表明存在脱髓鞘现象。机理研究表明,SVZ OPCs 中的 Rictor 减少、自我防御途径缺陷和胼胝体中的反应性神经胶质增生。鉴于多发性硬化症和阿尔茨海默氏病的病理相互交织,研究人员在以阿尔茨海默氏病为模型的 APP/PS1 小鼠中评估了铅对髓鞘形成的影响。与对照组相比,小鼠在长期接触铅(饮用水中含有 1000 ppm Pb,以 PbAc2 形式存在 20 周)后进行的髓鞘核磁共振成像显示,胼胝体存在严重的脱髓鞘现象。脉络丛的免疫染色显示,经铅处理的动物体内信号分子(Klotho、OTX2)表达减少。这些观察结果表明,铅可能通过破坏SVZ OPCs的少突生成,导致胼胝体脱髓鞘。铅诱导的脱髓鞘是铅神经毒性(包括多发性硬化症)的一个重要致病途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demyelination and impaired oligodendrogenesis in the corpus callosum following lead exposure.

The corpus callosum is an oligodendrocyte-enriched brain region, replenished by newborn oligodendrocytes from oligodendrocyte progenitor cells (OPCs) in subventricular zone (SVZ). Lead (Pb) exposure has been associated with multiple sclerosis, a disease characterized by the loss of oligodendrocytes. This study aimed to investigate the effects of Pb exposure on oligodendrogenesis in SVZ and myelination in the corpus callosum. Adult female mice were used for a disproportionately higher prevalence of multiple sclerosis in females. Acute Pb exposure (one ip-injection of 27 mg Pb/kg as PbAc2 24 hr before sampling) caused mild Pb accumulation in the corpus callosum. Ex vivo assay using isolated SVZ tissues collected from acute Pb-exposed brains showed a diminished oligodendrogenesis in SVZ-derived neurospheres compared with controls. In vivo subchronic Pb exposure (13.5 mg Pb/kg by daily oral gavage 4 wk) revealed significantly decreased newborn BrdU+/MBP+ oligodendrocytes in the corpus callosum, suggesting demyelination. Mechanistic investigations indicated decreased Rictor in SVZ OPCs, defective self-defense pathways, and reactive gliosis in the corpus callosum. Given the interwined pathologies between multiple sclerosis and Alzheimer's disease, the effect of Pb on myelination was evaluated in AD-modeled APP/PS1 mice. Myelin MRI on mice following chronic exposure (1,000 ppm Pb in drinking water as PbAc2 for 20 wk) revealed a profound demyelination in the corpus callosum compared with controls. Immunostaining of the choroid plexus showed diminished signaling molecule (Klotho, OTX2) expressions in Pb-treated animals. These observations suggest that Pb caused demyelination in the corpus callosum, likely by disrupting oligodendrogenesis from SVZ OPCs. Pb-induced demyelination represents a crucial pathogenic pathway in Pb neurotoxicity, including multiple sclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信