存在低随机性的分散性多变量方程的近似值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yvonne Alama Bronsard, Yvain Bruned, Katharina Schratz
{"title":"存在低随机性的分散性多变量方程的近似值","authors":"Yvonne Alama Bronsard, Yvain Bruned, Katharina Schratz","doi":"10.1007/s10208-023-09625-8","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new class of numerical schemes which allow for low-regularity approximations to the expectation <span>\\( \\mathbb {E}(|u_{k}(t, v^{\\eta })|^2)\\)</span>, where <span>\\(u_k\\)</span> denotes the <i>k</i>-th Fourier coefficient of the solution <i>u</i> of the dispersive equation and <span>\\( v^{\\eta }(x) \\)</span> the associated random initial data. This quantity plays an important role in physics, in particular in the study of wave turbulence where one needs to adopt a statistical approach in order to obtain deep insight into the <i>generic</i> long-time behaviour of solutions to dispersive equations. Our new class of schemes is based on Wick’s theorem and Feynman diagrams together with a resonance-based discretisation (Bruned and Schratz in Forum Math Pi 10:E2, 2022) set in a more general context: we introduce a novel combinatorial structure called paired decorated forests which are two decorated trees whose decorations on the leaves come in pair. The character of the scheme draws its inspiration from the treatment of singular stochastic partial differential equations via regularity structures. In contrast to classical approaches, we do not discretise the PDE itself, but rather its expectation. This allows us to heavily exploit the optimal resonance structure and underlying gain in regularity on the finite dimensional (discrete) level.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximations of Dispersive PDEs in the Presence of Low-Regularity Randomness\",\"authors\":\"Yvonne Alama Bronsard, Yvain Bruned, Katharina Schratz\",\"doi\":\"10.1007/s10208-023-09625-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new class of numerical schemes which allow for low-regularity approximations to the expectation <span>\\\\( \\\\mathbb {E}(|u_{k}(t, v^{\\\\eta })|^2)\\\\)</span>, where <span>\\\\(u_k\\\\)</span> denotes the <i>k</i>-th Fourier coefficient of the solution <i>u</i> of the dispersive equation and <span>\\\\( v^{\\\\eta }(x) \\\\)</span> the associated random initial data. This quantity plays an important role in physics, in particular in the study of wave turbulence where one needs to adopt a statistical approach in order to obtain deep insight into the <i>generic</i> long-time behaviour of solutions to dispersive equations. Our new class of schemes is based on Wick’s theorem and Feynman diagrams together with a resonance-based discretisation (Bruned and Schratz in Forum Math Pi 10:E2, 2022) set in a more general context: we introduce a novel combinatorial structure called paired decorated forests which are two decorated trees whose decorations on the leaves come in pair. The character of the scheme draws its inspiration from the treatment of singular stochastic partial differential equations via regularity structures. In contrast to classical approaches, we do not discretise the PDE itself, but rather its expectation. This allows us to heavily exploit the optimal resonance structure and underlying gain in regularity on the finite dimensional (discrete) level.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-023-09625-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09625-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类新的数值方案,它允许对期望值\( \mathbb {E}(|u_{k}(t, v^{\eta })|^2)\) 进行低规则性近似,其中\(u_k\) 表示分散方程解 u 的第 k 个傅里叶系数,\( v^{\eta }(x) \) 表示相关的随机初始数据。这个量在物理学中发挥着重要作用,尤其是在波湍流研究中,人们需要采用统计方法来深入了解分散方程解的一般长期行为。我们的新方案基于威克定理和费曼图,以及基于共振的离散化(Bruned 和 Schratz 在 Forum Math Pi 10:E2, 2022 上发表),其背景更为宽泛:我们引入了一种新颖的组合结构,称为配对装饰林,即两棵叶子上的装饰成对的装饰树。该方案的特点源自通过正则结构处理奇异随机偏微分方程。与经典方法不同的是,我们并不对 PDE 本身进行离散化,而是对其期望进行离散化。这样,我们就能在有限维(离散)水平上大量利用最优共振结构和正则性的潜在增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximations of Dispersive PDEs in the Presence of Low-Regularity Randomness

Approximations of Dispersive PDEs in the Presence of Low-Regularity Randomness

We introduce a new class of numerical schemes which allow for low-regularity approximations to the expectation \( \mathbb {E}(|u_{k}(t, v^{\eta })|^2)\), where \(u_k\) denotes the k-th Fourier coefficient of the solution u of the dispersive equation and \( v^{\eta }(x) \) the associated random initial data. This quantity plays an important role in physics, in particular in the study of wave turbulence where one needs to adopt a statistical approach in order to obtain deep insight into the generic long-time behaviour of solutions to dispersive equations. Our new class of schemes is based on Wick’s theorem and Feynman diagrams together with a resonance-based discretisation (Bruned and Schratz in Forum Math Pi 10:E2, 2022) set in a more general context: we introduce a novel combinatorial structure called paired decorated forests which are two decorated trees whose decorations on the leaves come in pair. The character of the scheme draws its inspiration from the treatment of singular stochastic partial differential equations via regularity structures. In contrast to classical approaches, we do not discretise the PDE itself, but rather its expectation. This allows us to heavily exploit the optimal resonance structure and underlying gain in regularity on the finite dimensional (discrete) level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信