Siyuan Luo, Pierre-Luc Germain, Mark D. Robinson, Ferdinand von Meyenn
{"title":"单细胞染色质数据分析计算方法基准测试","authors":"Siyuan Luo, Pierre-Luc Germain, Mark D. Robinson, Ferdinand von Meyenn","doi":"10.1186/s13059-024-03356-x","DOIUrl":null,"url":null,"abstract":"Single-cell chromatin accessibility assays, such as scATAC-seq, are increasingly employed in individual and joint multi-omic profiling of single cells. As the accumulation of scATAC-seq and multi-omics datasets continue, challenges in analyzing such sparse, noisy, and high-dimensional data become pressing. Specifically, one challenge relates to optimizing the processing of chromatin-level measurements and efficiently extracting information to discern cellular heterogeneity. This is of critical importance, since the identification of cell types is a fundamental step in current single-cell data analysis practices. We benchmark 8 feature engineering pipelines derived from 5 recent methods to assess their ability to discover and discriminate cell types. By using 10 metrics calculated at the cell embedding, shared nearest neighbor graph, or partition levels, we evaluate the performance of each method at different data processing stages. This comprehensive approach allows us to thoroughly understand the strengths and weaknesses of each method and the influence of parameter selection. Our analysis provides guidelines for choosing analysis methods for different datasets. Overall, feature aggregation, SnapATAC, and SnapATAC2 outperform latent semantic indexing-based methods. For datasets with complex cell-type structures, SnapATAC and SnapATAC2 are preferred. With large datasets, SnapATAC2 and ArchR are most scalable.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"135 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking computational methods for single-cell chromatin data analysis\",\"authors\":\"Siyuan Luo, Pierre-Luc Germain, Mark D. Robinson, Ferdinand von Meyenn\",\"doi\":\"10.1186/s13059-024-03356-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell chromatin accessibility assays, such as scATAC-seq, are increasingly employed in individual and joint multi-omic profiling of single cells. As the accumulation of scATAC-seq and multi-omics datasets continue, challenges in analyzing such sparse, noisy, and high-dimensional data become pressing. Specifically, one challenge relates to optimizing the processing of chromatin-level measurements and efficiently extracting information to discern cellular heterogeneity. This is of critical importance, since the identification of cell types is a fundamental step in current single-cell data analysis practices. We benchmark 8 feature engineering pipelines derived from 5 recent methods to assess their ability to discover and discriminate cell types. By using 10 metrics calculated at the cell embedding, shared nearest neighbor graph, or partition levels, we evaluate the performance of each method at different data processing stages. This comprehensive approach allows us to thoroughly understand the strengths and weaknesses of each method and the influence of parameter selection. Our analysis provides guidelines for choosing analysis methods for different datasets. Overall, feature aggregation, SnapATAC, and SnapATAC2 outperform latent semantic indexing-based methods. For datasets with complex cell-type structures, SnapATAC and SnapATAC2 are preferred. With large datasets, SnapATAC2 and ArchR are most scalable.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03356-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03356-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Benchmarking computational methods for single-cell chromatin data analysis
Single-cell chromatin accessibility assays, such as scATAC-seq, are increasingly employed in individual and joint multi-omic profiling of single cells. As the accumulation of scATAC-seq and multi-omics datasets continue, challenges in analyzing such sparse, noisy, and high-dimensional data become pressing. Specifically, one challenge relates to optimizing the processing of chromatin-level measurements and efficiently extracting information to discern cellular heterogeneity. This is of critical importance, since the identification of cell types is a fundamental step in current single-cell data analysis practices. We benchmark 8 feature engineering pipelines derived from 5 recent methods to assess their ability to discover and discriminate cell types. By using 10 metrics calculated at the cell embedding, shared nearest neighbor graph, or partition levels, we evaluate the performance of each method at different data processing stages. This comprehensive approach allows us to thoroughly understand the strengths and weaknesses of each method and the influence of parameter selection. Our analysis provides guidelines for choosing analysis methods for different datasets. Overall, feature aggregation, SnapATAC, and SnapATAC2 outperform latent semantic indexing-based methods. For datasets with complex cell-type structures, SnapATAC and SnapATAC2 are preferred. With large datasets, SnapATAC2 and ArchR are most scalable.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.