智能移动机器人的认知导航:基于拓扑记忆配置的学习方法

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Qiming Liu;Xinru Cui;Zhe Liu;Hesheng Wang
{"title":"智能移动机器人的认知导航:基于拓扑记忆配置的学习方法","authors":"Qiming Liu;Xinru Cui;Zhe Liu;Hesheng Wang","doi":"10.1109/JAS.2024.124332","DOIUrl":null,"url":null,"abstract":"Autonomous navigation for intelligent mobile robots has gained significant attention, with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory. In this paper, we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations. We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation. This tackles the issues of topological node redundancy and incorrect edge connections, which stem from the distribution gap between the spatial and perceptual domains. Furthermore, we propose a differentiable graph extraction structure, the topology multi-factor transformer (TMFT). This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation. Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures. Comprehensive validation through behavior visualization, interpretability tests, and real-world deployment further underscore the adaptability and efficacy of our method.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 9","pages":"1933-1943"},"PeriodicalIF":15.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive Navigation for Intelligent Mobile Robots: A Learning-Based Approach with Topological Memory Configuration\",\"authors\":\"Qiming Liu;Xinru Cui;Zhe Liu;Hesheng Wang\",\"doi\":\"10.1109/JAS.2024.124332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous navigation for intelligent mobile robots has gained significant attention, with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory. In this paper, we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations. We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation. This tackles the issues of topological node redundancy and incorrect edge connections, which stem from the distribution gap between the spatial and perceptual domains. Furthermore, we propose a differentiable graph extraction structure, the topology multi-factor transformer (TMFT). This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation. Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures. Comprehensive validation through behavior visualization, interpretability tests, and real-world deployment further underscore the adaptability and efficacy of our method.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 9\",\"pages\":\"1933-1943\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10551318/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10551318/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能移动机器人的自主导航已获得极大关注,其重点是使机器人能够在保持空间记忆的基础上生成可靠的策略。在本文中,我们提出了一种基于学习的视觉导航管道,它使用拓扑图作为记忆配置。我们引入了一种独特的在线拓扑构建方法,该方法融合了测距姿势估计和感知相似性估计。这解决了拓扑节点冗余和边缘连接错误的问题,这些问题源于空间域和感知域之间的分布差距。此外,我们还提出了一种可微分图提取结构,即拓扑多因子变换器(TMFT)。这种结构利用图神经网络来整合全局记忆,并结合多因子注意机制来强调与相关目标线索密切相关的元素,从而生成策略。对图像目标导航任务的逼真模拟结果表明,与现有的记忆结构相比,我们提出的管道具有卓越的导航性能。通过行为可视化、可解释性测试和实际部署进行的全面验证进一步强调了我们方法的适应性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cognitive Navigation for Intelligent Mobile Robots: A Learning-Based Approach with Topological Memory Configuration
Autonomous navigation for intelligent mobile robots has gained significant attention, with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory. In this paper, we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations. We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation. This tackles the issues of topological node redundancy and incorrect edge connections, which stem from the distribution gap between the spatial and perceptual domains. Furthermore, we propose a differentiable graph extraction structure, the topology multi-factor transformer (TMFT). This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation. Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures. Comprehensive validation through behavior visualization, interpretability tests, and real-world deployment further underscore the adaptability and efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信