{"title":"结合机器学习、分子动力学和自由能分析进行 (5HT)-2A 受体调节剂分类","authors":"Xian Yu, Yasmine Eid, Maryam Jama, Diane Pham, Marawan Ahmed, Melika Shabani attar, Zainab Samiuddin, Khaled Barakat","doi":"10.1016/j.jmgm.2024.108842","DOIUrl":null,"url":null,"abstract":"<div><p>The 5-Hydroxytryptamine (5HT)-2A receptor, a key target in psychoactive drug development, presents significant challenges in the design of selective compounds. Here, we describe the construction, evaluation and validation of two machine learning (ML) models for the classification of bioactivity mechanisms against the (5HT)-2A receptor. Employing neural networks and XGBoost models, we achieved an overall accuracy of around 87 %, which was further enhanced through molecular modelling (MM) (<em>e.g.</em> molecular dynamics simulations) and binding free energy analysis. This ML-MM integration provided insights into the mechanisms of direct modulators and prodrugs. A significant outcome of the current study is the development of a ‘binding free energy fingerprint’ specific to (5HT)-2A modulators, offering a novel metric for evaluating drug efficacy against this target. Our study demonstrates the prospective of employing a successful workflow combining AI with structural biology, offering a powerful tool for advancing psychoactive drug discovery.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"132 ","pages":"Article 108842"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining machine learning, molecular dynamics, and free energy analysis for (5HT)-2A receptor modulator classification\",\"authors\":\"Xian Yu, Yasmine Eid, Maryam Jama, Diane Pham, Marawan Ahmed, Melika Shabani attar, Zainab Samiuddin, Khaled Barakat\",\"doi\":\"10.1016/j.jmgm.2024.108842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The 5-Hydroxytryptamine (5HT)-2A receptor, a key target in psychoactive drug development, presents significant challenges in the design of selective compounds. Here, we describe the construction, evaluation and validation of two machine learning (ML) models for the classification of bioactivity mechanisms against the (5HT)-2A receptor. Employing neural networks and XGBoost models, we achieved an overall accuracy of around 87 %, which was further enhanced through molecular modelling (MM) (<em>e.g.</em> molecular dynamics simulations) and binding free energy analysis. This ML-MM integration provided insights into the mechanisms of direct modulators and prodrugs. A significant outcome of the current study is the development of a ‘binding free energy fingerprint’ specific to (5HT)-2A modulators, offering a novel metric for evaluating drug efficacy against this target. Our study demonstrates the prospective of employing a successful workflow combining AI with structural biology, offering a powerful tool for advancing psychoactive drug discovery.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"132 \",\"pages\":\"Article 108842\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001426\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001426","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Combining machine learning, molecular dynamics, and free energy analysis for (5HT)-2A receptor modulator classification
The 5-Hydroxytryptamine (5HT)-2A receptor, a key target in psychoactive drug development, presents significant challenges in the design of selective compounds. Here, we describe the construction, evaluation and validation of two machine learning (ML) models for the classification of bioactivity mechanisms against the (5HT)-2A receptor. Employing neural networks and XGBoost models, we achieved an overall accuracy of around 87 %, which was further enhanced through molecular modelling (MM) (e.g. molecular dynamics simulations) and binding free energy analysis. This ML-MM integration provided insights into the mechanisms of direct modulators and prodrugs. A significant outcome of the current study is the development of a ‘binding free energy fingerprint’ specific to (5HT)-2A modulators, offering a novel metric for evaluating drug efficacy against this target. Our study demonstrates the prospective of employing a successful workflow combining AI with structural biology, offering a powerful tool for advancing psychoactive drug discovery.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.