CFAD:用于假音频检测的中文数据集

IF 2.4 3区 计算机科学 Q2 ACOUSTICS
Haoxin Ma , Jiangyan Yi , Chenglong Wang , Xinrui Yan , Jianhua Tao , Tao Wang , Shiming Wang , Ruibo Fu
{"title":"CFAD:用于假音频检测的中文数据集","authors":"Haoxin Ma ,&nbsp;Jiangyan Yi ,&nbsp;Chenglong Wang ,&nbsp;Xinrui Yan ,&nbsp;Jianhua Tao ,&nbsp;Tao Wang ,&nbsp;Shiming Wang ,&nbsp;Ruibo Fu","doi":"10.1016/j.specom.2024.103122","DOIUrl":null,"url":null,"abstract":"<div><p>Fake audio detection is a growing concern and some relevant datasets have been designed for research. However, there is no standard public Chinese dataset under complex conditions. In this paper, we aim to fill in the gap and design a Chinese fake audio detection dataset (CFAD) for studying more generalized detection methods. Twelve mainstream speech-generation techniques are used to generate fake audio. To simulate the real-life scenarios, three noise datasets are selected for noise adding at five different signal-to-noise ratios, and six codecs are considered for audio transcoding (format conversion). CFAD dataset can be used not only for fake audio detection but also for detecting the algorithms of fake utterances for audio forensics. Baseline results are presented with analysis. The results that show fake audio detection methods with generalization remain challenging. The CFAD dataset is publicly available.<span><span><sup>1</sup></span></span></p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"164 ","pages":"Article 103122"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFAD: A Chinese dataset for fake audio detection\",\"authors\":\"Haoxin Ma ,&nbsp;Jiangyan Yi ,&nbsp;Chenglong Wang ,&nbsp;Xinrui Yan ,&nbsp;Jianhua Tao ,&nbsp;Tao Wang ,&nbsp;Shiming Wang ,&nbsp;Ruibo Fu\",\"doi\":\"10.1016/j.specom.2024.103122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fake audio detection is a growing concern and some relevant datasets have been designed for research. However, there is no standard public Chinese dataset under complex conditions. In this paper, we aim to fill in the gap and design a Chinese fake audio detection dataset (CFAD) for studying more generalized detection methods. Twelve mainstream speech-generation techniques are used to generate fake audio. To simulate the real-life scenarios, three noise datasets are selected for noise adding at five different signal-to-noise ratios, and six codecs are considered for audio transcoding (format conversion). CFAD dataset can be used not only for fake audio detection but also for detecting the algorithms of fake utterances for audio forensics. Baseline results are presented with analysis. The results that show fake audio detection methods with generalization remain challenging. The CFAD dataset is publicly available.<span><span><sup>1</sup></span></span></p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"164 \",\"pages\":\"Article 103122\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639324000931\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639324000931","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

虚假音频检测日益受到关注,一些相关的数据集已被设计用于研究。然而,目前还没有复杂条件下的标准公开中文数据集。本文旨在填补这一空白,设计一个中文假音频检测数据集(CFAD),用于研究更通用的检测方法。本文使用了 12 种主流语音生成技术来生成假音频。为了模拟真实场景,我们选择了三种噪声数据集在五种不同信噪比下添加噪声,并考虑了六种编解码器用于音频转码(格式转换)。CFAD 数据集不仅可用于假音频检测,还可用于检测音频取证中假语音的算法。基线结果与分析一起呈现。结果表明,假音频检测方法的通用性仍具有挑战性。CFAD 数据集可公开获取1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFAD: A Chinese dataset for fake audio detection

Fake audio detection is a growing concern and some relevant datasets have been designed for research. However, there is no standard public Chinese dataset under complex conditions. In this paper, we aim to fill in the gap and design a Chinese fake audio detection dataset (CFAD) for studying more generalized detection methods. Twelve mainstream speech-generation techniques are used to generate fake audio. To simulate the real-life scenarios, three noise datasets are selected for noise adding at five different signal-to-noise ratios, and six codecs are considered for audio transcoding (format conversion). CFAD dataset can be used not only for fake audio detection but also for detecting the algorithms of fake utterances for audio forensics. Baseline results are presented with analysis. The results that show fake audio detection methods with generalization remain challenging. The CFAD dataset is publicly available.1

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信