{"title":"SAM-RSP:基于分段任何事物模型和粗略分段提示的新型少镜头分段方法","authors":"Jiaguang Li, Ying Wei, Wei Zhang, Zhenrui Shi","doi":"10.1016/j.imavis.2024.105214","DOIUrl":null,"url":null,"abstract":"<div><p>Few-shot segmentation (FSS) aims to segment novel classes with a few labeled images. The backbones used in existing methods are pre-trained through classification tasks on the ImageNet dataset. Although these backbones can effectively perceive the semantic categories of images, they cannot accurately perceive the regional boundaries within one image, which limits the model performance. Recently, Segment Anything Model (SAM) has achieved precise image segmentation based on point or box prompts, thanks to its excellent perception of region boundaries within one image. However, it cannot effectively provide semantic information of images. This paper proposes a new few-shot segmentation method that can effectively perceive both semantic categories and regional boundaries. This method first utilizes the SAM encoder to perceive regions and obtain the query embedding. Then the support and query images are input into a backbone pre-trained on ImageNet to perceive semantics and generate a rough segmentation prompt (RSP). This query embedding is combined with the prompt to generate a pixel-level query prototype, which can better match the query embedding. Finally, the query embedding, prompt, and prototype are combined and input into the designed multi-layer prompt transformer decoder, which is more efficient and lightweight, and can provide a more accurate segmentation result. In addition, other methods can be easily combined with our framework to improve their performance. Plenty of experiments on PASCAL-5<sup><em>i</em></sup> and COCO-20<sup><em>i</em></sup> under 1-shot and 5-shot settings prove the effectiveness of our method. Our method also achieves new state-of-the-art. Codes are available at <span><span>https://github.com/Jiaguang-NEU/SAM-RSP</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"150 ","pages":"Article 105214"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAM-RSP: A new few-shot segmentation method based on segment anything model and rough segmentation prompts\",\"authors\":\"Jiaguang Li, Ying Wei, Wei Zhang, Zhenrui Shi\",\"doi\":\"10.1016/j.imavis.2024.105214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Few-shot segmentation (FSS) aims to segment novel classes with a few labeled images. The backbones used in existing methods are pre-trained through classification tasks on the ImageNet dataset. Although these backbones can effectively perceive the semantic categories of images, they cannot accurately perceive the regional boundaries within one image, which limits the model performance. Recently, Segment Anything Model (SAM) has achieved precise image segmentation based on point or box prompts, thanks to its excellent perception of region boundaries within one image. However, it cannot effectively provide semantic information of images. This paper proposes a new few-shot segmentation method that can effectively perceive both semantic categories and regional boundaries. This method first utilizes the SAM encoder to perceive regions and obtain the query embedding. Then the support and query images are input into a backbone pre-trained on ImageNet to perceive semantics and generate a rough segmentation prompt (RSP). This query embedding is combined with the prompt to generate a pixel-level query prototype, which can better match the query embedding. Finally, the query embedding, prompt, and prototype are combined and input into the designed multi-layer prompt transformer decoder, which is more efficient and lightweight, and can provide a more accurate segmentation result. In addition, other methods can be easily combined with our framework to improve their performance. Plenty of experiments on PASCAL-5<sup><em>i</em></sup> and COCO-20<sup><em>i</em></sup> under 1-shot and 5-shot settings prove the effectiveness of our method. Our method also achieves new state-of-the-art. Codes are available at <span><span>https://github.com/Jiaguang-NEU/SAM-RSP</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"150 \",\"pages\":\"Article 105214\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003196\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003196","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
SAM-RSP: A new few-shot segmentation method based on segment anything model and rough segmentation prompts
Few-shot segmentation (FSS) aims to segment novel classes with a few labeled images. The backbones used in existing methods are pre-trained through classification tasks on the ImageNet dataset. Although these backbones can effectively perceive the semantic categories of images, they cannot accurately perceive the regional boundaries within one image, which limits the model performance. Recently, Segment Anything Model (SAM) has achieved precise image segmentation based on point or box prompts, thanks to its excellent perception of region boundaries within one image. However, it cannot effectively provide semantic information of images. This paper proposes a new few-shot segmentation method that can effectively perceive both semantic categories and regional boundaries. This method first utilizes the SAM encoder to perceive regions and obtain the query embedding. Then the support and query images are input into a backbone pre-trained on ImageNet to perceive semantics and generate a rough segmentation prompt (RSP). This query embedding is combined with the prompt to generate a pixel-level query prototype, which can better match the query embedding. Finally, the query embedding, prompt, and prototype are combined and input into the designed multi-layer prompt transformer decoder, which is more efficient and lightweight, and can provide a more accurate segmentation result. In addition, other methods can be easily combined with our framework to improve their performance. Plenty of experiments on PASCAL-5i and COCO-20i under 1-shot and 5-shot settings prove the effectiveness of our method. Our method also achieves new state-of-the-art. Codes are available at https://github.com/Jiaguang-NEU/SAM-RSP.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.