RAD51 S181P 突变会缩短雌性小鼠的寿命

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sherry G. Dodds , Gene Hubbard , Yong Jun Choi , Kyungjae Myung , Gene Elliot , Lisa Garrett , Tae Moon Kim , Paul Hasty
{"title":"RAD51 S181P 突变会缩短雌性小鼠的寿命","authors":"Sherry G. Dodds ,&nbsp;Gene Hubbard ,&nbsp;Yong Jun Choi ,&nbsp;Kyungjae Myung ,&nbsp;Gene Elliot ,&nbsp;Lisa Garrett ,&nbsp;Tae Moon Kim ,&nbsp;Paul Hasty","doi":"10.1016/j.mrfmmm.2024.111878","DOIUrl":null,"url":null,"abstract":"<div><p>RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in <em>RAD51</em> causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males. Histological analysis found that most mice in this study died from lymphoma, independent of genotype and sex. We propose that a potential cause for shortened lifespan in SP/SP females is due to the RF defect.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"829 ","pages":"Article 111878"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0027510724000289/pdfft?md5=39f47dbaabdae7ba92ee31eea49d1079&pid=1-s2.0-S0027510724000289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The RAD51 S181P mutation shortens lifespan of female mice\",\"authors\":\"Sherry G. Dodds ,&nbsp;Gene Hubbard ,&nbsp;Yong Jun Choi ,&nbsp;Kyungjae Myung ,&nbsp;Gene Elliot ,&nbsp;Lisa Garrett ,&nbsp;Tae Moon Kim ,&nbsp;Paul Hasty\",\"doi\":\"10.1016/j.mrfmmm.2024.111878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in <em>RAD51</em> causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males. Histological analysis found that most mice in this study died from lymphoma, independent of genotype and sex. We propose that a potential cause for shortened lifespan in SP/SP females is due to the RF defect.</p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"829 \",\"pages\":\"Article 111878\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0027510724000289/pdfft?md5=39f47dbaabdae7ba92ee31eea49d1079&pid=1-s2.0-S0027510724000289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510724000289\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510724000289","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RAD51 对同源重组(HR)途径至关重要,它能修复 DNA 双链断裂(DSB)并保护复制叉(RF)。此前,我们发现 RAD51 的 S181P(SP)突变会导致 RF 维护缺陷,但却能进行 DSB 修复。在这里,我们报告了与 +/+ 雌性小鼠相比,SP/SP 雌性小鼠的寿命缩短,而雄性小鼠则没有。组织学分析发现,本研究中的大多数小鼠死于淋巴瘤,与基因型和性别无关。我们认为,SP/SP雌鼠寿命缩短的潜在原因是射频缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The RAD51 S181P mutation shortens lifespan of female mice

RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in RAD51 causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males. Histological analysis found that most mice in this study died from lymphoma, independent of genotype and sex. We propose that a potential cause for shortened lifespan in SP/SP females is due to the RF defect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
24
审稿时长
51 days
期刊介绍: Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs. MR publishes articles in the following areas: Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence. The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance. Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing. Landscape of somatic mutations and epimutations in cancer and aging. Role of de novo mutations in human disease and aging; mutations in population genomics. Interactions between mutations and epimutations. The role of epimutations in chromatin structure and function. Mitochondrial DNA mutations and their consequences in terms of human disease and aging. Novel ways to generate mutations and epimutations in cell lines and animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信