{"title":"广义线性混合模型中 M 估计器的指数一致性","authors":"Andrea Bratsberg , Magne Thoresen , Abhik Ghosh","doi":"10.1016/j.jspi.2024.106222","DOIUrl":null,"url":null,"abstract":"<div><p>Generalized linear mixed models are powerful tools for analyzing clustered data, where the unknown parameters are classically (and most commonly) estimated by the maximum likelihood and restricted maximum likelihood procedures. However, since the likelihood-based procedures are known to be highly sensitive to outliers, M-estimators have become popular as a means to obtain robust estimates under possible data contamination. In this paper, we prove that for sufficiently smooth general loss functions defining the M-estimators in generalized linear mixed models, the tail probability of the deviation between the estimated and the true regression coefficients has an exponential bound. This implies an exponential rate of consistency of these M-estimators under appropriate assumptions, generalizing the existing exponential consistency results from univariate to multivariate responses. We have illustrated this theoretical result further for the special examples of the maximum likelihood estimator and the robust minimum density power divergence estimator, a popular example of model-based M-estimators, in the settings of linear and logistic mixed models, comparing it with the empirical rate of convergence through simulation studies.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"235 ","pages":"Article 106222"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037837582400079X/pdfft?md5=852e7e6dbe375fd6c8f548a7fe669070&pid=1-s2.0-S037837582400079X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exponential consistency of M-estimators in generalized linear mixed models\",\"authors\":\"Andrea Bratsberg , Magne Thoresen , Abhik Ghosh\",\"doi\":\"10.1016/j.jspi.2024.106222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generalized linear mixed models are powerful tools for analyzing clustered data, where the unknown parameters are classically (and most commonly) estimated by the maximum likelihood and restricted maximum likelihood procedures. However, since the likelihood-based procedures are known to be highly sensitive to outliers, M-estimators have become popular as a means to obtain robust estimates under possible data contamination. In this paper, we prove that for sufficiently smooth general loss functions defining the M-estimators in generalized linear mixed models, the tail probability of the deviation between the estimated and the true regression coefficients has an exponential bound. This implies an exponential rate of consistency of these M-estimators under appropriate assumptions, generalizing the existing exponential consistency results from univariate to multivariate responses. We have illustrated this theoretical result further for the special examples of the maximum likelihood estimator and the robust minimum density power divergence estimator, a popular example of model-based M-estimators, in the settings of linear and logistic mixed models, comparing it with the empirical rate of convergence through simulation studies.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"235 \",\"pages\":\"Article 106222\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037837582400079X/pdfft?md5=852e7e6dbe375fd6c8f548a7fe669070&pid=1-s2.0-S037837582400079X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837582400079X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582400079X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exponential consistency of M-estimators in generalized linear mixed models
Generalized linear mixed models are powerful tools for analyzing clustered data, where the unknown parameters are classically (and most commonly) estimated by the maximum likelihood and restricted maximum likelihood procedures. However, since the likelihood-based procedures are known to be highly sensitive to outliers, M-estimators have become popular as a means to obtain robust estimates under possible data contamination. In this paper, we prove that for sufficiently smooth general loss functions defining the M-estimators in generalized linear mixed models, the tail probability of the deviation between the estimated and the true regression coefficients has an exponential bound. This implies an exponential rate of consistency of these M-estimators under appropriate assumptions, generalizing the existing exponential consistency results from univariate to multivariate responses. We have illustrated this theoretical result further for the special examples of the maximum likelihood estimator and the robust minimum density power divergence estimator, a popular example of model-based M-estimators, in the settings of linear and logistic mixed models, comparing it with the empirical rate of convergence through simulation studies.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.