利用 CZTS 纳米粒子增强倒置结构过氧化物太阳能电池的性能

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Aijie Ma , Vicky Jain , Ekaterina Diakina , Adil Ismael Mohammed , Halijah Hassan , Heba Taha M. Abdelghani , Xiaolin yang
{"title":"利用 CZTS 纳米粒子增强倒置结构过氧化物太阳能电池的性能","authors":"Aijie Ma ,&nbsp;Vicky Jain ,&nbsp;Ekaterina Diakina ,&nbsp;Adil Ismael Mohammed ,&nbsp;Halijah Hassan ,&nbsp;Heba Taha M. Abdelghani ,&nbsp;Xiaolin yang","doi":"10.1016/j.physe.2024.116069","DOIUrl":null,"url":null,"abstract":"<div><p>Inverted structure perovskite solar cells have attracted much attention in recent years due to their reliable operational stability, low residual, and low-temperature fabrication process. In the past few years, to accelerate their commercialization, the focus of research on the inverted structure perovskite solar cells was on the power conversion efficiency increasing. In this study nanoparticles of Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) were doped into the PEDOT:PSS film as the hole transport layer (HTL) and then the interface carrier recombination quenching was observed. Consequently, it leads the s to charge carrier's collection enhancement of the Inverted perovskite solar cells. Compared to other types of HTLs, the use of CZTS HTL reduces the amount of interaction of the HTL film and the perovskite film, which results in an increment of the stability of the solar cell over time.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116069"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of inverted structure perovskite solar cell by CZTS nanoparticles\",\"authors\":\"Aijie Ma ,&nbsp;Vicky Jain ,&nbsp;Ekaterina Diakina ,&nbsp;Adil Ismael Mohammed ,&nbsp;Halijah Hassan ,&nbsp;Heba Taha M. Abdelghani ,&nbsp;Xiaolin yang\",\"doi\":\"10.1016/j.physe.2024.116069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inverted structure perovskite solar cells have attracted much attention in recent years due to their reliable operational stability, low residual, and low-temperature fabrication process. In the past few years, to accelerate their commercialization, the focus of research on the inverted structure perovskite solar cells was on the power conversion efficiency increasing. In this study nanoparticles of Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) were doped into the PEDOT:PSS film as the hole transport layer (HTL) and then the interface carrier recombination quenching was observed. Consequently, it leads the s to charge carrier's collection enhancement of the Inverted perovskite solar cells. Compared to other types of HTLs, the use of CZTS HTL reduces the amount of interaction of the HTL film and the perovskite film, which results in an increment of the stability of the solar cell over time.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116069\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724001735\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001735","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,倒置结构磷灰石太阳能电池因其可靠的运行稳定性、低残留物和低温制造工艺而备受关注。在过去的几年中,为了加速其商业化进程,倒置结构包晶体太阳能电池的研究重点是提高功率转换效率。本研究将 Cu2ZnSnS4(CZTS)纳米粒子掺杂到 PEDOT:PSS 薄膜中作为空穴传输层(HTL),然后观察到界面载流子重组淬灭。因此,它提高了反相包晶石太阳能电池的电荷载流子收集能力。与其他类型的 HTL 相比,CZTS HTL 的使用减少了 HTL 薄膜与包晶薄膜之间的相互作用,从而提高了太阳能电池的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of inverted structure perovskite solar cell by CZTS nanoparticles

Inverted structure perovskite solar cells have attracted much attention in recent years due to their reliable operational stability, low residual, and low-temperature fabrication process. In the past few years, to accelerate their commercialization, the focus of research on the inverted structure perovskite solar cells was on the power conversion efficiency increasing. In this study nanoparticles of Cu2ZnSnS4 (CZTS) were doped into the PEDOT:PSS film as the hole transport layer (HTL) and then the interface carrier recombination quenching was observed. Consequently, it leads the s to charge carrier's collection enhancement of the Inverted perovskite solar cells. Compared to other types of HTLs, the use of CZTS HTL reduces the amount of interaction of the HTL film and the perovskite film, which results in an increment of the stability of the solar cell over time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信