在选择偏差的情况下利用电子病历招募患者:两阶段抽样框架。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI:10.1214/23-aoas1860
Guanghao Zhang, Lauren J Beesley, Bhramar Mukherjee, X U Shi
{"title":"在选择偏差的情况下利用电子病历招募患者:两阶段抽样框架。","authors":"Guanghao Zhang, Lauren J Beesley, Bhramar Mukherjee, X U Shi","doi":"10.1214/23-aoas1860","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHRs) are increasingly recognized as a cost-effective resource for patient recruitment in clinical research. However, how to optimally select a cohort from millions of individuals to answer a scientific question of interest remains unclear. Consider a study to estimate the mean or mean difference of an expensive outcome. Inexpensive auxiliary covariates predictive of the outcome may often be available in patients' health records, presenting an opportunity to recruit patients selectively, which may improve efficiency in downstream analyses. In this paper we propose a two-phase sampling design that leverages available information on auxiliary covariates in EHR data. A key challenge in using EHR data for multiphase sampling is the potential selection bias, because EHR data are not necessarily representative of the target population. Extending existing literature on two-phase sampling design, we derive an optimal two-phase sampling method that improves efficiency over random sampling while accounting for the potential selection bias in EHR data. We demonstrate the efficiency gain from our sampling design via simulation studies and an application evaluating the prevalence of hypertension among U.S. adults leveraging data from the Michigan Genomics Initiative, a longitudinal biorepository in Michigan Medicine.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 3","pages":"1858-1878"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323140/pdf/","citationCount":"0","resultStr":"{\"title\":\"PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK.\",\"authors\":\"Guanghao Zhang, Lauren J Beesley, Bhramar Mukherjee, X U Shi\",\"doi\":\"10.1214/23-aoas1860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic health records (EHRs) are increasingly recognized as a cost-effective resource for patient recruitment in clinical research. However, how to optimally select a cohort from millions of individuals to answer a scientific question of interest remains unclear. Consider a study to estimate the mean or mean difference of an expensive outcome. Inexpensive auxiliary covariates predictive of the outcome may often be available in patients' health records, presenting an opportunity to recruit patients selectively, which may improve efficiency in downstream analyses. In this paper we propose a two-phase sampling design that leverages available information on auxiliary covariates in EHR data. A key challenge in using EHR data for multiphase sampling is the potential selection bias, because EHR data are not necessarily representative of the target population. Extending existing literature on two-phase sampling design, we derive an optimal two-phase sampling method that improves efficiency over random sampling while accounting for the potential selection bias in EHR data. We demonstrate the efficiency gain from our sampling design via simulation studies and an application evaluating the prevalence of hypertension among U.S. adults leveraging data from the Michigan Genomics Initiative, a longitudinal biorepository in Michigan Medicine.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"18 3\",\"pages\":\"1858-1878\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aoas1860\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-aoas1860","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHR)越来越被认为是临床研究中招募病人的一种具有成本效益的资源。然而,如何从数以百万计的个体中最优化地选择一个队列来回答感兴趣的科学问题仍不清楚。考虑一项估算昂贵结果的平均值或平均差的研究。患者的健康记录中通常可能存在可预测结果的廉价辅助协变量,这为有选择性地招募患者提供了机会,可提高下游分析的效率。在本文中,我们提出了一种两阶段抽样设计,充分利用电子病历数据中可用的辅助协变量信息。使用电子病历数据进行多阶段抽样的一个主要挑战是潜在的选择偏差,因为电子病历数据并不一定代表目标人群。我们扩展了有关两阶段抽样设计的现有文献,推导出了一种最佳的两阶段抽样方法,它比随机抽样提高了效率,同时考虑到了电子病历数据中潜在的选择偏差。我们通过模拟研究和一个评估美国成年人高血压患病率的应用,利用密歇根基因组学倡议(Michigan Genomics Initiative)的数据(密歇根医学的一个纵向生物库),证明了我们的抽样设计提高了效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK.

Electronic health records (EHRs) are increasingly recognized as a cost-effective resource for patient recruitment in clinical research. However, how to optimally select a cohort from millions of individuals to answer a scientific question of interest remains unclear. Consider a study to estimate the mean or mean difference of an expensive outcome. Inexpensive auxiliary covariates predictive of the outcome may often be available in patients' health records, presenting an opportunity to recruit patients selectively, which may improve efficiency in downstream analyses. In this paper we propose a two-phase sampling design that leverages available information on auxiliary covariates in EHR data. A key challenge in using EHR data for multiphase sampling is the potential selection bias, because EHR data are not necessarily representative of the target population. Extending existing literature on two-phase sampling design, we derive an optimal two-phase sampling method that improves efficiency over random sampling while accounting for the potential selection bias in EHR data. We demonstrate the efficiency gain from our sampling design via simulation studies and an application evaluating the prevalence of hypertension among U.S. adults leveraging data from the Michigan Genomics Initiative, a longitudinal biorepository in Michigan Medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信