Rajesh K Jain, Eric Polley, Mark Weiner, Amy Iwamaye, Elbert Huang, Tamara Vokes
{"title":"基于电子健康记录(EHR)的风险计算器可预测与 FRAX 相当的骨折:概念验证研究。","authors":"Rajesh K Jain, Eric Polley, Mark Weiner, Amy Iwamaye, Elbert Huang, Tamara Vokes","doi":"10.1007/s00198-024-07221-2","DOIUrl":null,"url":null,"abstract":"<p><p>Information in the electronic health record (EHR), such as diagnoses, vital signs, utilization, medications, and laboratory values, may predict fractures well without the need to verbally ascertain risk factors. In our study, as a proof of concept, we developed and internally validated a fracture risk calculator using only information in the EHR.</p><p><strong>Purpose: </strong>Fracture risk calculators, such as the Fracture Risk Assessment Tool, or FRAX, typically lie outside the clinician workflow. Conversely, the electronic health record (EHR) is at the center of the clinical workflow, and many variables in the EHR could predict fractures without having to verbally ascertain FRAX risk factors. We sought to evaluate the utility of EHR variables to predict fractures and, as a proof of concept, to create an EHR-based fracture risk model.</p><p><strong>Methods: </strong>Routine clinical data from 24,189 subjects presenting to primary care from 2010 to 2018 was utilized. Major osteoporotic fractures (MOFs) were captured by physician diagnosis codes. Data was split into training (n = 18,141) and test sets (n = 6048). We fit Cox regression models for candidate risk factors in the training set, and then created a global model using a backward stepwise approach. We then applied the model to the test set and compared the discrimination and calibration to FRAX.</p><p><strong>Results: </strong>We found variables related to vital signs, utilization, diagnoses, medications, and laboratory values to be associated with incident MOF. Our final model included 19 variables, including age, BMI, Parkinson's disease, chronic kidney disease, and albumin levels. When applied to the test set, we found the discrimination (AUC 0.73 vs. 0.70, p = 0.08) and calibration were comparable to FRAX.</p><p><strong>Conclusion: </strong>Routinely collected data in EHR systems can generate adequate fracture predictions without the need to verbally ascertain fracture risk factors. In the future, this could allow for automated fracture prediction at the point of care to improve osteoporosis screening and treatment rates.</p>","PeriodicalId":19638,"journal":{"name":"Osteoporosis International","volume":" ","pages":"2117-2126"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electronic health record (EHR)-based risk calculator can predict fractures comparably to FRAX: a proof-of-concept study.\",\"authors\":\"Rajesh K Jain, Eric Polley, Mark Weiner, Amy Iwamaye, Elbert Huang, Tamara Vokes\",\"doi\":\"10.1007/s00198-024-07221-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Information in the electronic health record (EHR), such as diagnoses, vital signs, utilization, medications, and laboratory values, may predict fractures well without the need to verbally ascertain risk factors. In our study, as a proof of concept, we developed and internally validated a fracture risk calculator using only information in the EHR.</p><p><strong>Purpose: </strong>Fracture risk calculators, such as the Fracture Risk Assessment Tool, or FRAX, typically lie outside the clinician workflow. Conversely, the electronic health record (EHR) is at the center of the clinical workflow, and many variables in the EHR could predict fractures without having to verbally ascertain FRAX risk factors. We sought to evaluate the utility of EHR variables to predict fractures and, as a proof of concept, to create an EHR-based fracture risk model.</p><p><strong>Methods: </strong>Routine clinical data from 24,189 subjects presenting to primary care from 2010 to 2018 was utilized. Major osteoporotic fractures (MOFs) were captured by physician diagnosis codes. Data was split into training (n = 18,141) and test sets (n = 6048). We fit Cox regression models for candidate risk factors in the training set, and then created a global model using a backward stepwise approach. We then applied the model to the test set and compared the discrimination and calibration to FRAX.</p><p><strong>Results: </strong>We found variables related to vital signs, utilization, diagnoses, medications, and laboratory values to be associated with incident MOF. Our final model included 19 variables, including age, BMI, Parkinson's disease, chronic kidney disease, and albumin levels. When applied to the test set, we found the discrimination (AUC 0.73 vs. 0.70, p = 0.08) and calibration were comparable to FRAX.</p><p><strong>Conclusion: </strong>Routinely collected data in EHR systems can generate adequate fracture predictions without the need to verbally ascertain fracture risk factors. In the future, this could allow for automated fracture prediction at the point of care to improve osteoporosis screening and treatment rates.</p>\",\"PeriodicalId\":19638,\"journal\":{\"name\":\"Osteoporosis International\",\"volume\":\" \",\"pages\":\"2117-2126\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osteoporosis International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00198-024-07221-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoporosis International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00198-024-07221-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
An electronic health record (EHR)-based risk calculator can predict fractures comparably to FRAX: a proof-of-concept study.
Information in the electronic health record (EHR), such as diagnoses, vital signs, utilization, medications, and laboratory values, may predict fractures well without the need to verbally ascertain risk factors. In our study, as a proof of concept, we developed and internally validated a fracture risk calculator using only information in the EHR.
Purpose: Fracture risk calculators, such as the Fracture Risk Assessment Tool, or FRAX, typically lie outside the clinician workflow. Conversely, the electronic health record (EHR) is at the center of the clinical workflow, and many variables in the EHR could predict fractures without having to verbally ascertain FRAX risk factors. We sought to evaluate the utility of EHR variables to predict fractures and, as a proof of concept, to create an EHR-based fracture risk model.
Methods: Routine clinical data from 24,189 subjects presenting to primary care from 2010 to 2018 was utilized. Major osteoporotic fractures (MOFs) were captured by physician diagnosis codes. Data was split into training (n = 18,141) and test sets (n = 6048). We fit Cox regression models for candidate risk factors in the training set, and then created a global model using a backward stepwise approach. We then applied the model to the test set and compared the discrimination and calibration to FRAX.
Results: We found variables related to vital signs, utilization, diagnoses, medications, and laboratory values to be associated with incident MOF. Our final model included 19 variables, including age, BMI, Parkinson's disease, chronic kidney disease, and albumin levels. When applied to the test set, we found the discrimination (AUC 0.73 vs. 0.70, p = 0.08) and calibration were comparable to FRAX.
Conclusion: Routinely collected data in EHR systems can generate adequate fracture predictions without the need to verbally ascertain fracture risk factors. In the future, this could allow for automated fracture prediction at the point of care to improve osteoporosis screening and treatment rates.
期刊介绍:
An international multi-disciplinary journal which is a joint initiative between the International Osteoporosis Foundation and the National Osteoporosis Foundation of the USA, Osteoporosis International provides a forum for the communication and exchange of current ideas concerning the diagnosis, prevention, treatment and management of osteoporosis and other metabolic bone diseases.
It publishes: original papers - reporting progress and results in all areas of osteoporosis and its related fields; review articles - reflecting the present state of knowledge in special areas of summarizing limited themes in which discussion has led to clearly defined conclusions; educational articles - giving information on the progress of a topic of particular interest; case reports - of uncommon or interesting presentations of the condition.
While focusing on clinical research, the Journal will also accept submissions on more basic aspects of research, where they are considered by the editors to be relevant to the human disease spectrum.