{"title":"基于连接组的指纹识别:再现性、精确性和行为预测。","authors":"Jivesh Ramduny, Clare Kelly","doi":"10.1038/s41386-024-01962-8","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the \"functional connectome\" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.</p>","PeriodicalId":19143,"journal":{"name":"Neuropsychopharmacology","volume":" ","pages":"114-123"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525788/pdf/","citationCount":"0","resultStr":"{\"title\":\"Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction.\",\"authors\":\"Jivesh Ramduny, Clare Kelly\",\"doi\":\"10.1038/s41386-024-01962-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the \\\"functional connectome\\\" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.</p>\",\"PeriodicalId\":19143,\"journal\":{\"name\":\"Neuropsychopharmacology\",\"volume\":\" \",\"pages\":\"114-123\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41386-024-01962-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41386-024-01962-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction.
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
期刊介绍:
Neuropsychopharmacology is a reputable international scientific journal that serves as the official publication of the American College of Neuropsychopharmacology (ACNP). The journal's primary focus is on research that enhances our knowledge of the brain and behavior, with a particular emphasis on the molecular, cellular, physiological, and psychological aspects of substances that affect the central nervous system (CNS). It also aims to identify new molecular targets for the development of future drugs.
The journal prioritizes original research reports, but it also welcomes mini-reviews and perspectives, which are often solicited by the editorial office. These types of articles provide valuable insights and syntheses of current research trends and future directions in the field of neuroscience and pharmacology.