利用人工智能和临床 MALDI-TOF 质谱预测铜绿假单胞菌的耐药性

IF 5 2区 生物学 Q1 MICROBIOLOGY
mSystems Pub Date : 2024-09-17 Epub Date: 2024-08-16 DOI:10.1128/msystems.00789-24
Hoai-An Nguyen, Anton Y Peleg, Jiangning Song, Bhavna Antony, Geoffrey I Webb, Jessica A Wisniewski, Luke V Blakeway, Gnei Z Badoordeen, Ravali Theegala, Helen Zisis, David L Dowe, Nenad Macesic
{"title":"利用人工智能和临床 MALDI-TOF 质谱预测铜绿假单胞菌的耐药性","authors":"Hoai-An Nguyen, Anton Y Peleg, Jiangning Song, Bhavna Antony, Geoffrey I Webb, Jessica A Wisniewski, Luke V Blakeway, Gnei Z Badoordeen, Ravali Theegala, Helen Zisis, David L Dowe, Nenad Macesic","doi":"10.1128/msystems.00789-24","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in clinical microbiology laboratories for bacterial identification but its use for detection of antimicrobial resistance (AMR) remains limited. Here, we used MALDI-TOF MS with artificial intelligence (AI) approaches to successfully predict AMR in <i>Pseudomonas aeruginosa</i>, a priority pathogen with complex AMR mechanisms. The highest performance was achieved for modern β-lactam/β-lactamase inhibitor drugs, namely, ceftazidime/avibactam and ceftolozane/tazobactam. For these drugs, the model demonstrated area under the receiver operating characteristic curve (AUROC) of 0.869 and 0.856, specificity of 0.925 and 0.897, and sensitivity of 0.731 and 0.714, respectively. As part of this work, we developed dynamic binning, a feature engineering technique that effectively reduces the high-dimensional feature set and has wide-ranging applicability to MALDI-TOF MS data. Compared to conventional feature engineering approaches, the dynamic binning method yielded highest performance in 7 of 10 antimicrobials. Moreover, we showcased the efficacy of transfer learning in enhancing the AUROC performance for 8 of 11 antimicrobials. By assessing the contribution of features to the model's prediction, we identified proteins that may contribute to AMR mechanisms. Our findings demonstrate the potential of combining AI with MALDI-TOF MS as a rapid AMR diagnostic tool for <i>Pseudomonas aeruginosa</i>.IMPORTANCE<i>Pseudomonas aeruginosa</i> is a key bacterial pathogen that causes significant global morbidity and mortality. Antimicrobial resistance (AMR) emerges rapidly in <i>P. aeruginosa</i> and is driven by complex mechanisms. Drug-resistant <i>P. aeruginosa</i> is a major challenge in clinical settings due to limited treatment options. Early detection of AMR can guide antibiotic choices, improve patient outcomes, and avoid unnecessary antibiotic use. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid species identification in clinical microbiology. In this study, we repurposed mass spectra generated by MALDI-TOF and used them as inputs for artificial intelligence approaches to successfully predict AMR in <i>P. aeruginosa</i> for multiple key antibiotic classes. This work represents an important advance toward using MALDI-TOF as a rapid AMR diagnostic for <i>P. aeruginosa</i> in clinical settings.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0078924"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting <i>Pseudomonas aeruginosa</i> drug resistance using artificial intelligence and clinical MALDI-TOF mass spectra.\",\"authors\":\"Hoai-An Nguyen, Anton Y Peleg, Jiangning Song, Bhavna Antony, Geoffrey I Webb, Jessica A Wisniewski, Luke V Blakeway, Gnei Z Badoordeen, Ravali Theegala, Helen Zisis, David L Dowe, Nenad Macesic\",\"doi\":\"10.1128/msystems.00789-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in clinical microbiology laboratories for bacterial identification but its use for detection of antimicrobial resistance (AMR) remains limited. Here, we used MALDI-TOF MS with artificial intelligence (AI) approaches to successfully predict AMR in <i>Pseudomonas aeruginosa</i>, a priority pathogen with complex AMR mechanisms. The highest performance was achieved for modern β-lactam/β-lactamase inhibitor drugs, namely, ceftazidime/avibactam and ceftolozane/tazobactam. For these drugs, the model demonstrated area under the receiver operating characteristic curve (AUROC) of 0.869 and 0.856, specificity of 0.925 and 0.897, and sensitivity of 0.731 and 0.714, respectively. As part of this work, we developed dynamic binning, a feature engineering technique that effectively reduces the high-dimensional feature set and has wide-ranging applicability to MALDI-TOF MS data. Compared to conventional feature engineering approaches, the dynamic binning method yielded highest performance in 7 of 10 antimicrobials. Moreover, we showcased the efficacy of transfer learning in enhancing the AUROC performance for 8 of 11 antimicrobials. By assessing the contribution of features to the model's prediction, we identified proteins that may contribute to AMR mechanisms. Our findings demonstrate the potential of combining AI with MALDI-TOF MS as a rapid AMR diagnostic tool for <i>Pseudomonas aeruginosa</i>.IMPORTANCE<i>Pseudomonas aeruginosa</i> is a key bacterial pathogen that causes significant global morbidity and mortality. Antimicrobial resistance (AMR) emerges rapidly in <i>P. aeruginosa</i> and is driven by complex mechanisms. Drug-resistant <i>P. aeruginosa</i> is a major challenge in clinical settings due to limited treatment options. Early detection of AMR can guide antibiotic choices, improve patient outcomes, and avoid unnecessary antibiotic use. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid species identification in clinical microbiology. In this study, we repurposed mass spectra generated by MALDI-TOF and used them as inputs for artificial intelligence approaches to successfully predict AMR in <i>P. aeruginosa</i> for multiple key antibiotic classes. This work represents an important advance toward using MALDI-TOF as a rapid AMR diagnostic for <i>P. aeruginosa</i> in clinical settings.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0078924\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00789-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00789-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)被广泛应用于临床微生物实验室的细菌鉴定,但其在抗菌药耐药性(AMR)检测中的应用仍然有限。在这里,我们利用 MALDI-TOF MS 和人工智能(AI)方法成功预测了铜绿假单胞菌的 AMR,铜绿假单胞菌是一种具有复杂 AMR 机制的重点病原体。现代β-内酰胺/β-内酰胺酶抑制剂药物,即头孢唑肟/阿维巴坦和头孢洛氮烷/他唑巴坦的性能最高。对于这些药物,该模型的接收者操作特征曲线下面积(AUROC)分别为 0.869 和 0.856,特异性分别为 0.925 和 0.897,灵敏度分别为 0.731 和 0.714。作为这项工作的一部分,我们开发了动态分选技术,这是一种有效减少高维特征集的特征工程技术,对 MALDI-TOF MS 数据具有广泛的适用性。与传统的特征工程方法相比,动态分选法在 10 种抗菌药物中的 7 种中取得了最高的性能。此外,我们还展示了迁移学习在提高 11 种抗菌药物中 8 种的 AUROC 性能方面的功效。通过评估特征对模型预测的贡献,我们确定了可能有助于 AMR 机制的蛋白质。我们的研究结果证明了将人工智能与 MALDI-TOF MS 结合起来作为铜绿假单胞菌 AMR 快速诊断工具的潜力。铜绿假单胞菌的抗菌药耐药性(AMR)产生迅速,其产生机制复杂。由于治疗方案有限,耐药铜绿假单胞菌是临床环境中的一大挑战。早期检测 AMR 可以指导抗生素的选择,改善患者的治疗效果,避免不必要的抗生素使用。基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)被广泛应用于临床微生物学的快速物种鉴定。在本研究中,我们重新利用了 MALDI-TOF 生成的质谱,并将其作为人工智能方法的输入,成功预测了铜绿假单胞菌对多种关键抗生素类别的 AMR。这项工作是将 MALDI-TOF 用作临床环境中铜绿假单胞菌 AMR 快速诊断方法的重要进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Pseudomonas aeruginosa drug resistance using artificial intelligence and clinical MALDI-TOF mass spectra.

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in clinical microbiology laboratories for bacterial identification but its use for detection of antimicrobial resistance (AMR) remains limited. Here, we used MALDI-TOF MS with artificial intelligence (AI) approaches to successfully predict AMR in Pseudomonas aeruginosa, a priority pathogen with complex AMR mechanisms. The highest performance was achieved for modern β-lactam/β-lactamase inhibitor drugs, namely, ceftazidime/avibactam and ceftolozane/tazobactam. For these drugs, the model demonstrated area under the receiver operating characteristic curve (AUROC) of 0.869 and 0.856, specificity of 0.925 and 0.897, and sensitivity of 0.731 and 0.714, respectively. As part of this work, we developed dynamic binning, a feature engineering technique that effectively reduces the high-dimensional feature set and has wide-ranging applicability to MALDI-TOF MS data. Compared to conventional feature engineering approaches, the dynamic binning method yielded highest performance in 7 of 10 antimicrobials. Moreover, we showcased the efficacy of transfer learning in enhancing the AUROC performance for 8 of 11 antimicrobials. By assessing the contribution of features to the model's prediction, we identified proteins that may contribute to AMR mechanisms. Our findings demonstrate the potential of combining AI with MALDI-TOF MS as a rapid AMR diagnostic tool for Pseudomonas aeruginosa.IMPORTANCEPseudomonas aeruginosa is a key bacterial pathogen that causes significant global morbidity and mortality. Antimicrobial resistance (AMR) emerges rapidly in P. aeruginosa and is driven by complex mechanisms. Drug-resistant P. aeruginosa is a major challenge in clinical settings due to limited treatment options. Early detection of AMR can guide antibiotic choices, improve patient outcomes, and avoid unnecessary antibiotic use. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid species identification in clinical microbiology. In this study, we repurposed mass spectra generated by MALDI-TOF and used them as inputs for artificial intelligence approaches to successfully predict AMR in P. aeruginosa for multiple key antibiotic classes. This work represents an important advance toward using MALDI-TOF as a rapid AMR diagnostic for P. aeruginosa in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信