Runze Wang, Hubert Th. Wolterbeek, Antonia G. Denkova
{"title":"基于超小碲化银纳米粒子的铅-212/铋-212 体内发生器","authors":"Runze Wang, Hubert Th. Wolterbeek, Antonia G. Denkova","doi":"10.1002/jlcr.4121","DOIUrl":null,"url":null,"abstract":"<p>Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ultrasmall silver telluride nanoparticles with a core diameter of 2.1 nm were prepared and radiolabeled with lead-212 using a chelator-free method with a radiolabeling efficiency of 75%. The results from the in vitro radiochemical stability assay indicated a very high retention of bismuth-212 despite the internal conversion effects originating from the decay of <sup>212</sup>Pb. To further evaluate the potential of the nanoparticles, they were radiolabeled with indium-111, and their cell uptake and subcellular distribution were determined in 2D U87 cells, showing accumulation in the nucleus. Although not intentional, it was observed that the indium-111-radiolabeled nanoparticles induced efficient tumor cell killing, which was attributed to the Auger electrons emitted by indium-111. Combining the results obtained in this work with other favorable properties such as fast renal clearance and the possibility to attach targeting vectors on the surface of the nanoparticles, all well-known from the literature, these ultra-small silver telluride nanoparticles provide exciting opportunities for the design of theragnostic radiopharmaceuticals.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"67 11","pages":"375-383"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.4121","citationCount":"0","resultStr":"{\"title\":\"Lead-212/Bismuth-212 In Vivo Generator Based on Ultrasmall Silver Telluride Nanoparticles\",\"authors\":\"Runze Wang, Hubert Th. Wolterbeek, Antonia G. Denkova\",\"doi\":\"10.1002/jlcr.4121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ultrasmall silver telluride nanoparticles with a core diameter of 2.1 nm were prepared and radiolabeled with lead-212 using a chelator-free method with a radiolabeling efficiency of 75%. The results from the in vitro radiochemical stability assay indicated a very high retention of bismuth-212 despite the internal conversion effects originating from the decay of <sup>212</sup>Pb. To further evaluate the potential of the nanoparticles, they were radiolabeled with indium-111, and their cell uptake and subcellular distribution were determined in 2D U87 cells, showing accumulation in the nucleus. Although not intentional, it was observed that the indium-111-radiolabeled nanoparticles induced efficient tumor cell killing, which was attributed to the Auger electrons emitted by indium-111. Combining the results obtained in this work with other favorable properties such as fast renal clearance and the possibility to attach targeting vectors on the surface of the nanoparticles, all well-known from the literature, these ultra-small silver telluride nanoparticles provide exciting opportunities for the design of theragnostic radiopharmaceuticals.</p>\",\"PeriodicalId\":16288,\"journal\":{\"name\":\"Journal of labelled compounds & radiopharmaceuticals\",\"volume\":\"67 11\",\"pages\":\"375-383\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.4121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of labelled compounds & radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4121\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Lead-212/Bismuth-212 In Vivo Generator Based on Ultrasmall Silver Telluride Nanoparticles
Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ultrasmall silver telluride nanoparticles with a core diameter of 2.1 nm were prepared and radiolabeled with lead-212 using a chelator-free method with a radiolabeling efficiency of 75%. The results from the in vitro radiochemical stability assay indicated a very high retention of bismuth-212 despite the internal conversion effects originating from the decay of 212Pb. To further evaluate the potential of the nanoparticles, they were radiolabeled with indium-111, and their cell uptake and subcellular distribution were determined in 2D U87 cells, showing accumulation in the nucleus. Although not intentional, it was observed that the indium-111-radiolabeled nanoparticles induced efficient tumor cell killing, which was attributed to the Auger electrons emitted by indium-111. Combining the results obtained in this work with other favorable properties such as fast renal clearance and the possibility to attach targeting vectors on the surface of the nanoparticles, all well-known from the literature, these ultra-small silver telluride nanoparticles provide exciting opportunities for the design of theragnostic radiopharmaceuticals.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.