Yuhua Shi, Aifeng Qiu, Hengfeng Cui, Heng Lv, Lei Zhou
{"title":"鉴定与自噬和大吞噬细胞相关的预后特征,以预测胃癌的预后和治疗反应。","authors":"Yuhua Shi, Aifeng Qiu, Hengfeng Cui, Heng Lv, Lei Zhou","doi":"10.1007/s13258-024-01557-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional liquid biopsy markers show a low rate of positivity and accurate in gastric cancer. With the rapid advancement of sequencing technology, scientists have identified promising research avenues in this field. Autophagy and macropinocytosis utilize diverse pathways and mechanisms to supply resources and fuel for tumor growth. Nonetheless, their potential interplay introduces an untapped avenue for the discovery of novel tumor biomarkers.</p><p><strong>Objective: </strong>To develop an innovative prognostic signature based on autophagy- and micropinocytosis-related genes, with the aim to predict the outcome and therapeutic response of gastric cancer patients. Additionally, to validate the prognostic impact of this signature, and elucidate the role of representative molecules in gastric cancer.</p><p><strong>Methods: </strong>To construct and validate a prognostic signature for gastric cancer, bioinformatics methods such as COX regression, LASSO regression, survival analysis, ROC curve, and nomogram were utilized based on the sequencing and clinical data of gastric cancer patients retrieved from the TCGA and GEO databases. GSEA functional enrichment analyses were employed to predict the biological functions. Meanwhile, qRT-PCR and Western blot experiments were utilized to quantify the mRNA and protein expression levels. Furthermore, the EdU assay and colony formation assay were utilized to examine the cell proliferation ability while the Transwell assays were conducted to assess the migration and invasion abilities of gastric cancer cells.</p><p><strong>Results: </strong>Through consistency clustering and univariate COX analyses, potential prognostic genes involved in both autophagy and macropinocytosis were identified. Based on these genes, a 9-gene signature was constructed, which demonstrated high accuracy in predicting gastric cancer patients' survival period, immunotherapeutic response, and chemotherapy drug tolerance. Furthermore, qRT-PCR analyses of gastric cancer tissue samples showed that the representative genes of this signature were aberrantly overexpressed in gastric cancer, with MATN3, as the most notable molecule, exhibiting significant carcinogenic effects on cancer cells by actively regulating their proliferation, migration, and invasion abilities.</p><p><strong>Conclusion: </strong>Our newly created prognostic signature possesses significant potential as a biomarker for gastric cancer, while MATN3 is identified as an oncogenic factor in gastric cancer. This brings to light new perspectives, which can contribute to enhancing the diagnosis and treatment of gastric cancer.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"1149-1164"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of an autophagy- and macropinocytosis-related prognostic signature for the prediction of prognosis and therapeutic response in gastric cancer.\",\"authors\":\"Yuhua Shi, Aifeng Qiu, Hengfeng Cui, Heng Lv, Lei Zhou\",\"doi\":\"10.1007/s13258-024-01557-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traditional liquid biopsy markers show a low rate of positivity and accurate in gastric cancer. With the rapid advancement of sequencing technology, scientists have identified promising research avenues in this field. Autophagy and macropinocytosis utilize diverse pathways and mechanisms to supply resources and fuel for tumor growth. Nonetheless, their potential interplay introduces an untapped avenue for the discovery of novel tumor biomarkers.</p><p><strong>Objective: </strong>To develop an innovative prognostic signature based on autophagy- and micropinocytosis-related genes, with the aim to predict the outcome and therapeutic response of gastric cancer patients. Additionally, to validate the prognostic impact of this signature, and elucidate the role of representative molecules in gastric cancer.</p><p><strong>Methods: </strong>To construct and validate a prognostic signature for gastric cancer, bioinformatics methods such as COX regression, LASSO regression, survival analysis, ROC curve, and nomogram were utilized based on the sequencing and clinical data of gastric cancer patients retrieved from the TCGA and GEO databases. GSEA functional enrichment analyses were employed to predict the biological functions. Meanwhile, qRT-PCR and Western blot experiments were utilized to quantify the mRNA and protein expression levels. Furthermore, the EdU assay and colony formation assay were utilized to examine the cell proliferation ability while the Transwell assays were conducted to assess the migration and invasion abilities of gastric cancer cells.</p><p><strong>Results: </strong>Through consistency clustering and univariate COX analyses, potential prognostic genes involved in both autophagy and macropinocytosis were identified. Based on these genes, a 9-gene signature was constructed, which demonstrated high accuracy in predicting gastric cancer patients' survival period, immunotherapeutic response, and chemotherapy drug tolerance. Furthermore, qRT-PCR analyses of gastric cancer tissue samples showed that the representative genes of this signature were aberrantly overexpressed in gastric cancer, with MATN3, as the most notable molecule, exhibiting significant carcinogenic effects on cancer cells by actively regulating their proliferation, migration, and invasion abilities.</p><p><strong>Conclusion: </strong>Our newly created prognostic signature possesses significant potential as a biomarker for gastric cancer, while MATN3 is identified as an oncogenic factor in gastric cancer. This brings to light new perspectives, which can contribute to enhancing the diagnosis and treatment of gastric cancer.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"1149-1164\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01557-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01557-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of an autophagy- and macropinocytosis-related prognostic signature for the prediction of prognosis and therapeutic response in gastric cancer.
Background: Traditional liquid biopsy markers show a low rate of positivity and accurate in gastric cancer. With the rapid advancement of sequencing technology, scientists have identified promising research avenues in this field. Autophagy and macropinocytosis utilize diverse pathways and mechanisms to supply resources and fuel for tumor growth. Nonetheless, their potential interplay introduces an untapped avenue for the discovery of novel tumor biomarkers.
Objective: To develop an innovative prognostic signature based on autophagy- and micropinocytosis-related genes, with the aim to predict the outcome and therapeutic response of gastric cancer patients. Additionally, to validate the prognostic impact of this signature, and elucidate the role of representative molecules in gastric cancer.
Methods: To construct and validate a prognostic signature for gastric cancer, bioinformatics methods such as COX regression, LASSO regression, survival analysis, ROC curve, and nomogram were utilized based on the sequencing and clinical data of gastric cancer patients retrieved from the TCGA and GEO databases. GSEA functional enrichment analyses were employed to predict the biological functions. Meanwhile, qRT-PCR and Western blot experiments were utilized to quantify the mRNA and protein expression levels. Furthermore, the EdU assay and colony formation assay were utilized to examine the cell proliferation ability while the Transwell assays were conducted to assess the migration and invasion abilities of gastric cancer cells.
Results: Through consistency clustering and univariate COX analyses, potential prognostic genes involved in both autophagy and macropinocytosis were identified. Based on these genes, a 9-gene signature was constructed, which demonstrated high accuracy in predicting gastric cancer patients' survival period, immunotherapeutic response, and chemotherapy drug tolerance. Furthermore, qRT-PCR analyses of gastric cancer tissue samples showed that the representative genes of this signature were aberrantly overexpressed in gastric cancer, with MATN3, as the most notable molecule, exhibiting significant carcinogenic effects on cancer cells by actively regulating their proliferation, migration, and invasion abilities.
Conclusion: Our newly created prognostic signature possesses significant potential as a biomarker for gastric cancer, while MATN3 is identified as an oncogenic factor in gastric cancer. This brings to light new perspectives, which can contribute to enhancing the diagnosis and treatment of gastric cancer.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.