Annika Kohvakka, Mina Sattari, Janika Nättinen, Ulla Aapola, Pavlína Gregorová, Teuvo L. J. Tammela, Hannu Uusitalo, L. Peter Sarin, Tapio Visakorpi, Leena Latonen
{"title":"长非编码 RNA EPCART 通过 PI3K/AKT/mTOR 通路和 PDCD4 调节前列腺癌的翻译。","authors":"Annika Kohvakka, Mina Sattari, Janika Nättinen, Ulla Aapola, Pavlína Gregorová, Teuvo L. J. Tammela, Hannu Uusitalo, L. Peter Sarin, Tapio Visakorpi, Leena Latonen","doi":"10.1038/s41417-024-00822-3","DOIUrl":null,"url":null,"abstract":"While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1536-1546"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00822-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Long noncoding RNA EPCART regulates translation through PI3K/AKT/mTOR pathway and PDCD4 in prostate cancer\",\"authors\":\"Annika Kohvakka, Mina Sattari, Janika Nättinen, Ulla Aapola, Pavlína Gregorová, Teuvo L. J. Tammela, Hannu Uusitalo, L. Peter Sarin, Tapio Visakorpi, Leena Latonen\",\"doi\":\"10.1038/s41417-024-00822-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"31 10\",\"pages\":\"1536-1546\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41417-024-00822-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-024-00822-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-024-00822-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Long noncoding RNA EPCART regulates translation through PI3K/AKT/mTOR pathway and PDCD4 in prostate cancer
While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.