{"title":"支链氨基酸的积累会通过亮氨酸/胰蛋白酶 2 介导的 mTOR 信号传导使糖尿病视网膜病变中 Müller 细胞的神经炎症反应恶化。","authors":"Qiaoyun Gong, Jingyi Wang, Dawei Luo, Yupeng Xu, Rulin Zhang, Xin Li, Zihan Yin, Junwei Fang, Haiyan Wang","doi":"10.1007/s00592-024-02349-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to investigate branched-chain amino acid (BCAA) catabolism in diabetic retinopathy (DR).</p><p><strong>Methods: </strong>Wild-type and db/db mice were fed BCAAs (5 or 10 mg/kg/day) for 12 weeks, and hyperglycemia-exposed Müller cells were treated with BCAAs (2 or 5 mmol/L) for 24 and 48 h. BCAA levels were measured using MS/MS. Western blotting was performed to detect proteins. Flow cytometry, oxygen consumption rate, and Cell Counting Kit-8 assays were used to evaluate Müller cell viability. Each experiment was conducted at least thrice.</p><p><strong>Results: </strong>BCAAs and branched-chain α-keto acids (BCKAs) were increased in the retina and systemic tissues of diabetic mice, and these changes were further enhanced to approximately 2-fold by extra BCAAs compared to wild-type group. In vitro, BCAAs and BCKAs were induced in hyperglycemic Müller cells, and augmented by BCAA supplementation. The aberrant BCAA catabolism was accompanied by mTORC1 activation and subsequently induced TNF-ɑ, VEGFA, GS, and GFAP in retinas and Müller cells under diabetic conditions. The cell apoptosis rate increased by approximately 50%, and mitochondrial respiration was inhibited by hyperglycemia and BCAA in Müller cells. Additionally, mTORC1 signaling was activated by leucine in Müller cells. Knockdown of Sestrin2 or LeuRS significantly abolished the leucine-induced mTORC1 phosphorylation and protected Müller cell viability under diabetic conditions.</p><p><strong>Conclusions: </strong>We found that BCAA catabolism is hindered in DR through mTORC1 activation. Leucine plays a key role in inducing mTORC1 by sensing Sestrin2 in Müller cells. Targeting Sestrin2 may ameliorate the toxic effects of BCAA accumulation on Müller cells in DR.</p>","PeriodicalId":6921,"journal":{"name":"Acta Diabetologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation of branched-chain amino acids deteriorates the neuroinflammatory response of Müller cells in diabetic retinopathy via leucine/Sestrin2-mediated sensing of mTOR signaling.\",\"authors\":\"Qiaoyun Gong, Jingyi Wang, Dawei Luo, Yupeng Xu, Rulin Zhang, Xin Li, Zihan Yin, Junwei Fang, Haiyan Wang\",\"doi\":\"10.1007/s00592-024-02349-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aimed to investigate branched-chain amino acid (BCAA) catabolism in diabetic retinopathy (DR).</p><p><strong>Methods: </strong>Wild-type and db/db mice were fed BCAAs (5 or 10 mg/kg/day) for 12 weeks, and hyperglycemia-exposed Müller cells were treated with BCAAs (2 or 5 mmol/L) for 24 and 48 h. BCAA levels were measured using MS/MS. Western blotting was performed to detect proteins. Flow cytometry, oxygen consumption rate, and Cell Counting Kit-8 assays were used to evaluate Müller cell viability. Each experiment was conducted at least thrice.</p><p><strong>Results: </strong>BCAAs and branched-chain α-keto acids (BCKAs) were increased in the retina and systemic tissues of diabetic mice, and these changes were further enhanced to approximately 2-fold by extra BCAAs compared to wild-type group. In vitro, BCAAs and BCKAs were induced in hyperglycemic Müller cells, and augmented by BCAA supplementation. The aberrant BCAA catabolism was accompanied by mTORC1 activation and subsequently induced TNF-ɑ, VEGFA, GS, and GFAP in retinas and Müller cells under diabetic conditions. The cell apoptosis rate increased by approximately 50%, and mitochondrial respiration was inhibited by hyperglycemia and BCAA in Müller cells. Additionally, mTORC1 signaling was activated by leucine in Müller cells. Knockdown of Sestrin2 or LeuRS significantly abolished the leucine-induced mTORC1 phosphorylation and protected Müller cell viability under diabetic conditions.</p><p><strong>Conclusions: </strong>We found that BCAA catabolism is hindered in DR through mTORC1 activation. Leucine plays a key role in inducing mTORC1 by sensing Sestrin2 in Müller cells. Targeting Sestrin2 may ameliorate the toxic effects of BCAA accumulation on Müller cells in DR.</p>\",\"PeriodicalId\":6921,\"journal\":{\"name\":\"Acta Diabetologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Diabetologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00592-024-02349-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Diabetologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00592-024-02349-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Accumulation of branched-chain amino acids deteriorates the neuroinflammatory response of Müller cells in diabetic retinopathy via leucine/Sestrin2-mediated sensing of mTOR signaling.
Aims: This study aimed to investigate branched-chain amino acid (BCAA) catabolism in diabetic retinopathy (DR).
Methods: Wild-type and db/db mice were fed BCAAs (5 or 10 mg/kg/day) for 12 weeks, and hyperglycemia-exposed Müller cells were treated with BCAAs (2 or 5 mmol/L) for 24 and 48 h. BCAA levels were measured using MS/MS. Western blotting was performed to detect proteins. Flow cytometry, oxygen consumption rate, and Cell Counting Kit-8 assays were used to evaluate Müller cell viability. Each experiment was conducted at least thrice.
Results: BCAAs and branched-chain α-keto acids (BCKAs) were increased in the retina and systemic tissues of diabetic mice, and these changes were further enhanced to approximately 2-fold by extra BCAAs compared to wild-type group. In vitro, BCAAs and BCKAs were induced in hyperglycemic Müller cells, and augmented by BCAA supplementation. The aberrant BCAA catabolism was accompanied by mTORC1 activation and subsequently induced TNF-ɑ, VEGFA, GS, and GFAP in retinas and Müller cells under diabetic conditions. The cell apoptosis rate increased by approximately 50%, and mitochondrial respiration was inhibited by hyperglycemia and BCAA in Müller cells. Additionally, mTORC1 signaling was activated by leucine in Müller cells. Knockdown of Sestrin2 or LeuRS significantly abolished the leucine-induced mTORC1 phosphorylation and protected Müller cell viability under diabetic conditions.
Conclusions: We found that BCAA catabolism is hindered in DR through mTORC1 activation. Leucine plays a key role in inducing mTORC1 by sensing Sestrin2 in Müller cells. Targeting Sestrin2 may ameliorate the toxic effects of BCAA accumulation on Müller cells in DR.
期刊介绍:
Acta Diabetologica is a journal that publishes reports of experimental and clinical research on diabetes mellitus and related metabolic diseases. Original contributions on biochemical, physiological, pathophysiological and clinical aspects of research on diabetes and metabolic diseases are welcome. Reports are published in the form of original articles, short communications and letters to the editor. Invited reviews and editorials are also published. A Methodology forum, which publishes contributions on methodological aspects of diabetes in vivo and in vitro, is also available. The Editor-in-chief will be pleased to consider articles describing new techniques (e.g., new transplantation methods, metabolic models), of innovative importance in the field of diabetes/metabolism. Finally, workshop reports are also welcome in Acta Diabetologica.