从 De Novo 到 Xeno:推进超越蛋白质的大分子设计。

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Tyler Stukenbroeker
{"title":"从 De Novo 到 Xeno:推进超越蛋白质的大分子设计。","authors":"Tyler Stukenbroeker","doi":"10.1021/acssynbio.4c00179","DOIUrl":null,"url":null,"abstract":"<p><p>Protein synthesis methods have been adapted to incorporate an ever-growing level of non-natural components. Meanwhile, design of de novo protein structure and function has rapidly emerged as a viable capability. Yet, these two exciting trends have yet to intersect in a meaningful way. The ability to perform de novo design with non-proteinogenic components requires that synthesis and computation align on common targets and applications. This perspective examines the state of the art in these areas and identifies specific, consequential applications to advance the field toward generalized macromolecule design.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From De Novo to Xeno: Advancing Macromolecule Design beyond Proteins.\",\"authors\":\"Tyler Stukenbroeker\",\"doi\":\"10.1021/acssynbio.4c00179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein synthesis methods have been adapted to incorporate an ever-growing level of non-natural components. Meanwhile, design of de novo protein structure and function has rapidly emerged as a viable capability. Yet, these two exciting trends have yet to intersect in a meaningful way. The ability to perform de novo design with non-proteinogenic components requires that synthesis and computation align on common targets and applications. This perspective examines the state of the art in these areas and identifies specific, consequential applications to advance the field toward generalized macromolecule design.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00179\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00179","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质合成方法已得到调整,以加入越来越多的非天然成分。与此同时,重新设计蛋白质结构和功能也迅速成为一种可行的能力。然而,这两种令人兴奋的趋势还没有出现有意义的交集。利用非蛋白源成分进行从头设计的能力要求合成和计算在共同目标和应用上保持一致。本研究将探讨这些领域的技术现状,并确定具体的重要应用,以推动该领域朝着通用大分子设计的方向发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From De Novo to Xeno: Advancing Macromolecule Design beyond Proteins.

From De Novo to Xeno: Advancing Macromolecule Design beyond Proteins.

Protein synthesis methods have been adapted to incorporate an ever-growing level of non-natural components. Meanwhile, design of de novo protein structure and function has rapidly emerged as a viable capability. Yet, these two exciting trends have yet to intersect in a meaningful way. The ability to perform de novo design with non-proteinogenic components requires that synthesis and computation align on common targets and applications. This perspective examines the state of the art in these areas and identifies specific, consequential applications to advance the field toward generalized macromolecule design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信